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Abstract:
Tight gas reservoir (TGR) plays an important role in unconventional oil and gas resources.
The existing seepage models for TGR rarely consider the effects of heterogeneity, stress-
sensitivity, and the unsteady fluid exchange between matrix and fracture. Heterogeneity is
common for tight gas reservoir which should be carefully considered in geological model.
The stress-sensitivity effect of fracture is an important factor influencing the transient
flow behavior of TGR. Ultra-low porosity and permeability cause the unsteady flow
between matrix and fractures systems. So this paper introduced a mathematical model
for the horizontal well in a dual-porosity composite tight gas reservoir with considering
the stress-sensitivity effect and unsteady flow between matrix and fractures systems. Some
mathematical methods including the finite Fourier cosine transform, perturbation technique,
Laplace transform, superposition principle, Stehfest numerical inversion algorithm are used
to solve the nonlinear partial differential equation. Different flow regimes are divided
based on pressure transient analysis curves. The sensitivity analysis of related parameters
is studied according to pressure transient analysis and rate transient analysis curves. The
presented model and obtained results in this paper give better understanding on pressure
and rate transient behaviors of composite TGR.

1. Introduction
With the decline of production from conventional sources,

economically producing gas from unconventional sources,
such as tight gas, attracts more attention today. Tight gas
is an unconventional natural gas resource that is valued by
various countries in the world (Law et al., 2002; Holditch et
al., 2006; Naik, 2008). The United States has been developing
tight gas exploration technology since the late 1970s and has
discovered more than 20 tight gas fields. In China, abundant
tight gas is distributed in Sichuan basin and Ordos basin, and
it is estimated that the tight gas production of China will
reach 80 billion cubic meters by 2020 (Jia et al., 2012; Li
et al., 2017). For China and the rest of the world, tight gas
reservoirs have become an important alternative energy source
for conventional oil and gas resources.

Tight gas exists in underground reservoirs with microdarcy-
range permeability, with the existence of a large number
of natural fractures. Horizontal well is widely used in the
development of tight gas as an effective stimulation. Many
scholars have carried out related researches on naturally frac-
tured reservoir based on continuous assumption some dual

media models were generated, including Warren-Root (1963)
model, Kazemi (1968) model and de Swaan (1976) model.
Later, some scholars began to introduce fractal models to study
the characteristics of fractured reservoirs, where properties are
scaled with distance to some reference point in the domain
(Chang et al., 1990; Albinali et al., 2016; de Swaan, 2016).
In recent years, numerical simulation attracts researchers’
attention. It is able to consider more complicate situation
of unconventional reservoirs using meshed numerical models
(Wu et al., 2014; Noetinger, 2015; Ngo et al., 2017; Zhang et
al., 2017; Ding et al., 2018). However, analytical and semi-
analytical methods still need to be valued for their fast and
low-cost advantages.

For production performance of horizontal wells in naturally
fractured reservoirs, Göktas et al. (2000) presented a compar-
ative study of openhole and cased horizontal well completions
in thin bedded, tight sand gas reservoirs. Freeman et al. (2009)
developed a numerical model of microscale flow behavior
in tight gas and shale gas systems, which was capable of
characterizing flow behavior in micro- and nano-scale porous
media. Brown et al. (2011) presented an analytical trilinear-
flow model to simulate the performance of fractured horizontal
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wells in unconventional shale reservoirs. Nie et al. (2012) in-
vestigated the dual permeability flow issue for horizontal well-
production in a naturally fractured dual-porosity reservoir,
they considered the fracture and matrix systems as the flow
pathway connected with wellbore. Xu et al. (2013) developed
analytical solutions for shale gas/tight gas reservoirs with
multi-stage fractured horizontal well accounting for the un-
stimulated region as a dual porosity system. Kuchuk et al.
(2014) investigated rate-transient behavior of dual-porosity and
discrete naturally fractured reservoirs using semi-analytical
solutions. Li et al. (2017) deduced a dual-porosity model for
a horizontal well in tight gas reservoirs, the fluid exchange
between matrix systems and fracture systems is considered to
be a pseudo-steady state process.

Actual tight gas reservoir (TGR) are heterogeneous and a
lot of factors can cause this issue, such as the geologic discon-
tinuities and some production technologies. The model of this
article is capable of understanding the behavior of composite
TGR. The pressure transient analysis (PTA) and rate transient
analysis (RTA) are always used in which the relationship of
dimensionless pressure and rate with dimensionless time can
be evaluated. For horizontal wells in composite reservoirs,
Wang et al. (1997) derived an effective well diameter model
of horizontal well in radial composite reservoirs by Laplace
transform and superposition principle. Shi et al. (2012) studied
a transient well testing model of horizontal well in composite
reservoirs. They considered the porous media as homogeneous
single porosity media. The method of separation of variables
and Laplace transform were utilized. Ozkan et al. (1987)
took advantage of Green’s function and source-sink theory
to research the transient pressure behavior of horizontal well
in composite reservoirs. Ezulike et al. (2012) constructed
a 3D seepage model for linear composite reservoirs, semi-
analytical solution for the drawdown response in composite
clastic systems separated by a leaky fault was developed. Jiang
et al. (2015) recognized the defects of the existing horizontal
well models of composite reservoirs, the situation when the
horizontal well passed through the inner region in their model
is taken into account. For unconventional reservoirs, Xu et
al. (2015) studied the production performance analysis for
composite shale gas reservoir. Wei et al. (2017) introduced

the mathematical model of production performance analysis
for horizontal wells in composite coal bed methane reservoir.
As for stress-sensitivity effect of TGR, so many scholars have
proved the existence of the stress-sensitivity effect of tight oil
and gas reservoirs based on experimental research, and the
existence of this effect must affect the production dynamics
of tight gas (Shi et al., 2001; Zhang et al., 2004; Yu et al.,
2007; Zhu et al., 2013). However, only few scholars take this
scenario into account in their mathematical models.

This paper summarizes the advantages and disadvantages
of previous scholars, taking into account the following prac-
tical factors: (1) the tight gas reservoir is heterogeneous,
which is considered as a radial composite model in this
article; (2) considering the ultra-low permeability of TGR,
the fluid exchange of matrix and fracture systems should
not be considered as pseudo-steady state process, and the
unsteady state flow model in matrix is established in this
paper; (3) stress-sensitivity effect of TGR is coupled into
this mathematical model. The pressure transient analysis and
rate transient analysis curves are analyzed in detail. The goal
is to demonstrate the PTA and RTA results for the better
understanding of the production performances in tight gas
reservoirs’ development.

2. Physical model
The schematic diagram for horizontal well in composite

TGR is shown in Fig. 1. The composite gas reservoir is divided
into inner and outer region, both inner region and outer region
are seen as dual porosity media and are formed by matrix and
natural fracture systems. The model assumes: (1) the reservoir
is horizontal with uniform thickness h and original pressure
pi; (2) the inner region radius is r1 and the outer region is
infinite, the top and bottom of the reservoir are closed; (3)
the formation parameters of two regions are distinguished,
for the fracture system of inner region, the horizontal initial
permeability is k f hi1, the vertical initial permeability is k f vi1,
the compressibility is Ct f 1, the porosity is φ f 1, for the matrix
system, the permeability is km1, the compressibility is Ctm1,the
porosity is φm1; thus for the outer region, the parameters are
k f hi2, k f vi2, Ct f 2, φ f 2, km2, Ctm2, φm2; (4) the influence of
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Fig. 1. Horizontal well in composite TGR.
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Fracture system 

Matrix system 

rm=R 

Fig. 2. Schematic of matrix and fracture systems, the first part is revised from Warren and Root (1963).

gravity and capillary forces on fluid flow in both regions is
ignored; (5) the fluid properties in both regions are different,
the underground flow obey isothermal Darcy seepage; (6) a
horizontal well located in inner region totally produces at a
constant rate of qsc; (7) the matrix blocks are spherical, the
schematic diagram of matrix and fracture systems is shown in
Fig. 2, matrix blocks are disconnected to wellbore.

3. Mathematical model
For the matrix system of inner region, with the consider-

ation of unsteady flow, the partial differential equation (PDE)
in the matrix blocks can be obtained as follows from the
continuity equation, motion equation and state equations:

1
r2

m1

∂

∂ rm1

(
r2

m1km1
pm1

µ1Z1

∂ pm1

∂ rm1

)
= φm1Ctm1

pm1

Z1

∂ pm1

∂ t
(1)

Initial condition:

pm1 (rm1,0) = pi (2)

Inner boundary condition:

∂ pm1

∂ rm1

∣∣∣∣
rm1=0

= 0 (3)

Outer boundary condition:

pm1|rm1=R1
= p f 1 (4)

For the fracture system of inner region, with the considera-
tion of stress sensitivity, the PDE can be expressed as follows:

eγ(p f 1−pi)

[
1
r

∂

∂ r

(
k f hi1r

p f 1

µ1Z1

∂ p f 1

∂ r

)
+

∂

∂ z

(
k f vi1

p f 1

µ1Z1

∂ p f 1

∂ z

)]
+q∗1 = φ f 1Ct f 1

p f 1

Z1

∂ p f 1

∂ t
(5)

Analogously, the mathematical model for matrix system of
outer region can be expressed as follows:

1
r2

m2

∂

∂ rm2

(
r2

m2km2
pm2

µ2Z2

∂ pm2

∂ rm2

)
= φm2Ctm2

pm2

Z2

∂ pm2

∂ t
(6)

Initial condition:

pm2 (rm2,0) = pi (7)

Inner boundary condition:

∂ pm2

∂ rm2

∣∣∣∣
rm2=0

= 0 (8)

Outer boundary condition:

pm2|rm2=R2
= p f 2 (9)

For the fracture system of outer region, with the considera-
tion of stress sensitivity, the PDE can be expressed as follows:

eγ(p f 2−pi)
[

1
r

∂

∂ r

(
k f hi2r

p f 2

µ2Z2

∂ p f 2

∂ r

)
+

∂

∂ z

(
k f vi2

p f 2

µ2Z2

∂ p f 2

∂ z

)]
+q∗2 = φ f 2Ct f 2

p f 2

Z2

∂ p f 2

∂ t
(10)

The variables q∗j ( j = 1, 2) is the unsteady-state inter-
porosity flow rate of the gas from the matrix to the fractures,
which is:

q∗j =−
3
R j

km j
pm j

µ jZ j

∂ pm j

∂ rm j

∣∣∣∣
rm j=R j

(11)

It can be seen that exponential formula presented by
Pedrosa (1986) is applied in this mathematical model. In
this paper, the mathematical model is solved based on the
analytical method, and the exponential model is selected from
the point of view of realization. In fact, other mathematical
expressions such as power law model (Bernabe, 1986) and
polynomial model (Zhang et al., 2000; Fan et al., 2002)
for describing stress sensitivity effect of permeability were
introduced.

The permeability modulus γ is defined as:

γ =
1
k f

dk f

d p f
(12)

From Eq. (12), we can get:

k f = k f ieγ(p f−pi) (13)
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In order to eliminate the influence of viscosity (µ) and
compressibility factor (Z), the pseudo pressure is introduced:

ψm =
∫ pm

0

2p
µZ

d p (14)

ψ f =
∫ p f

0

2p
µZ

d p (15)

and permeability modulus can be transformed as follows:

γ =
1
k f

dk f

d p f
=

1
k f

dk f

dψ f

dψ f

d p f
=

1
k f

dk f

dψ f

2p f

µZ

So the pseudo permeability modulus can be defined as:

γp =
γ

2p f
µZ

=
1
k

dk
dψ

=
µZ
2p f

γ (16)

Substituting Eqs. (11)-(16) into Eq. (1)-(5) yields:

1
r2

m1

∂

∂ rm1

(
r2

m1km1
∂ψm1

∂ rm1

)
= φm1µ1Ctm1

∂ψm1

∂ t
(17)

ψm1 (rm1,0) = ψi (18)

∂ψm1

∂ rm1

∣∣∣∣
rm1=0

= 0 (19)

ψm1|rm1=R1
= ψ f 1 (20)

eγp(ψ f 1−ψi)
[

1
r

∂

∂ r

(
k f hi1r

∂ψ f 1

∂ r

)
+

∂

∂ z

(
k f vil

∂ψ f 1

∂ z

)]
− 3

R1
km1

∂ψm1

∂ rm1

∣∣∣∣
rm1=R1

= φ f 1µ1Ct f 1
∂ψ f 1

∂ t

(21)

Then the dimensionless variables are presented in Ap-
pendix A. According the dimensionless variables, the dimen-
sionless equations can be obtained. To eliminate the nonlin-
earity of Eq. (22), the perturbation theory is applied. Taking
the Laplace transformation with respect to tD, taking the finite
Fourier cosine transformation with respect to zD, the following
model of inner region is obtained (see Appendix B):

∂ 2ξ̃ f 1D0

∂ rD2 +
1
rD

∂ ξ̃ f 1D0

∂ rD
= gn

1ξ̃ f 1D0 (22)

where:

gn
1 = f1 +n2

π
2L2

1D (n = 0, 1, 2, . . .) (23)

f1 = sω1 +3λ1

√ (1−ω1)s
λ1

coth

√
(1−ω1)s

λ1
−1

 (24)

Similarly, the dimensionless mathematical model of outer
region can be obtained as follows:

1
r2

m2

∂

∂ rm2

(
r2

m2km2
∂ψm2

∂ rm2

)
= φm2µ2Ctm2

∂ψm2

∂ t
(25)

ψm2 (rm2,0) = ψi (26)

∂ψm2

∂ rm2

∣∣∣∣
rm2=0

= 0 (27)

ψm2|rm2=R2
= ψ f 2 (28)

eγp(ψ f 2−ψi)
[

1
r

∂

∂ r

(
k f hi2r

∂ψ f 2

∂ r

)
+

∂

∂ z

(
k f vi2

∂ψ f 2

∂ z

)]
− 3

R2
km2

∂ψm2

∂ rm2

∣∣∣∣
rm2=R2

= φ f 2µ2Ct f 2
∂ψ f 2

∂ t

(29)

Substituting the dimensionless variables and perturbation
technique into Eqs. (25)-(29), taking the Laplace transforma-
tion and the finite Fourier cosine transformation with respect
to tD and zD respectively, the following model of outer region
is obtained (see Appendix B):

∂ 2ξ̃ f 2D0

∂ rD2 +
1
rD

∂ ξ̃ f 2D0

∂ rD
= gn

2ξ f 2D0 (30)

where:

gn
2 = f2 +n2

π
2L2

2D (n = 0, 1, 2, . . .) (31)

f2 = sω2η12+3λ2

√ (1−ω2)sη12

λ2
coth

√
(1−ω2)sη12

λ2
−1


(32)

To solve the above equations, the inner boundary condition,
outer boundary condition and two interface conditions are
necessary, as Eqs. (33)-(36) showing as follows:

Inner boundary condition:

lim
rD→0+

rD
∂ ξ̃ f 1D0

∂ rD
=−cos(nπzwD)

2sL
(33)

Outer boundary condition:

lim
rD→∞

ξ̃ f 2D0 = 0 (34)

Interface conditions:

ξ̃ f1D0
(r1D) =

˜̃
ξ f 2D0 (r1D) (35)

∂ ξ̃ f 1D0

∂ rD

∣∣∣∣∣∣
rD=r1D

=
1

M12

∂ ξ̃ f 2D0

∂ rD

∣∣∣∣∣∣
rD=r1D

(36)
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4. Model solution
The formation pressure of the composite TGR can be

solved through the combination of Eqs. (22), (30) and (33)-
(36). The general solution of modified Bessels Eqs. (22) and
(30) can be expressed as follows:

ξ̃ f 1D0 = A1I0
(√

gn
1rD
)
+B1K0

(√
gn

1rD
)

(37)

ξ̃ f 2D0 = A2I0
(√

gn
2rD
)
+B2K0

(√
gn

2rD
)

(38)

Substituting Eq. (38) into the outer boundary condition of
Eq. (34), we can get:

lim
rD→∞

[
A2I0

(√
gn

2rD
)
+B2K0

(√
gn

2rD
)]

= 0 (39)

The coefficient A2 can be easily obtained according to the
property of Bessel’s function as follows:

A2 = 0 (40)

Substituting Eq. (37) into the inner boundary condition of
Eq. (34) yields:

lim
rD→0+

rD
[√

gn
1A1I1

(√
gn

1rD
)
−
√

gn
1B1K1

(√
gn

1rD
)]

=− q̂cos(nπzwD)

sqsc

(41)

The coefficient B1 can be obtained according to the prop-
erty of Bessel’s function as follows:

B1 =
q̂cos(nπzwD)

sqsc
(42)

According to interface conditions, we get:

A1I0
(√

gn
1r1D

)
+B1K0

(√
gn

1r1D
)

= A2I0
(√

gn
2r1D

)
+B2K0

(√
gn

2r1D
) (43)

A1I1
(√

gn
1r1D

)
−B1K1

(√
gn

1r1D
)

=

√
gn

2

M12
√

gn
1

[
A2I1

(√
gn

2r1D
)
−B2K1

(√
gn

2r1D
)] (44)

With the combination of Eqs. (40), (43) and (44), the
coefficient A1 can be obtained as follows (see Eq. (45)):

A1 =

M12
√

gn
1K1

(√
gn

1r1D
)

K0
(√

gn
2r1D

)
−σ

n
2 K0

(√
gn

1r1D
)

K1
(√

gn
2r1D

)


M12
√

gn
1I1
(√

gn
1r1D

)
K0
(√

gn
2r1D

)
+σ

n
2 I0
(√

gn
1r1D

)
K1
(√

gn
2r1D

)
 B1 (45)

Taking Eqs. (42) and (45) into Eq. (37) yields:

ξ̃ wD0 =ξ̃ f 1D0

=
q̂cos(nπzwD)

sqsc

[
βnI0

(√
gn

1rD
)
+K0

(√
gn

1rD
)] (46)

where:

βn =

M12
√

gn
1K1

(√
gn

1r1D
)

K0
(√

gn
2r1D

)
−
√

gn
2K0

(√
gn

1r1D
)

K1
(√

gn
2r1D

)


M12
√

gn
1I1
(√

gn
1r1D

)
K0
(√

gn
2r1D

)
+
√

gn
2I0
(√

gn
1r1D

)
K1
(√

gn
2r1D

)
 (47)

Applying the inverse cosine transformation:

ξ wD0 = C0 +2
∞

∑
n=1

Cn cos(nπzD) (48)

So far the point source solution in inner region is obtained
as follows:

ξ wD0 =
1

2Ls

[
β0I0

(√
g0

1rD

)
+K0

(√
g0

1rD

)]
+

1
Ls

∞

∑
n=1

cos(nπzwD)cos(nπzD)
[
βnI0

(√
gn

1rD
)
+K0

(√
gn

1rD
)]

(49)
By integrating the point source from -L to L (after dimen-

sionless treatment: -1 to 1), we can get the pressure distribution
in the reservoir for horizontal well which can be taken as
the line source in the center of composite TGR. When the
horizontal well is completely in the inner region, the wellbore
pressure distribution in Laplace domain can be obtained as
follows:

ξ wD =
∫ 1

−1

1
2s

[
β0I0

(√
g0

1rD

)
+K0

(√
g0

1rD

)]
dxwD

+
∞

∑
n=1

cos(nπzwD)cos(nπzD)

s

∫ 1

−1

[
βnI0

(√
gn

1rD
)

+K0
(√

gn
1rD
)]dxwD

(50)

where rD =

√
(xD− xwD)

2 +(yD− ywD)
2.

With the method of Duhamel’s principle (Van Everdingen
and Hurst, 1949), the solution considering well storage effect
and skin effect can be obtained as follows:

ξ wD (s,CD,S) =
sξ wD(s)+

S
2L1D

s+CDs2
[
sξ wD(s)+

S
2L1D

] (51)

By means of Stehfest numerical inversion algorithm (Ste-
hfest, 1970), the perturbation solution ξwD (rD, tD) in real space
can be solved, thus the transient pressure of wellbore in real
space is expressed as follows:

ψwD =− 1
γpD

ln [1− γpDξwD (rD, tD)] (52)

From the research achievement of Van Everdingenet and
Hurst (1949) when the well is producing at a constant bottom-
hole pressure, the dimensionless rate in Laplace domain can
be calculated as follows:

QD =
1

s2ψwD
(53)
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(a) First radial flow (b) Linear flow (c) Second radial flow 

(d) Transfer regime (e) Late pseudo-radial flow 

Fig. 3. Schematic of flow regimes.

So after obtaining the dimensionless pseudo pressure solu-
tion, taking the numerical Laplace transform (Yao et al., 2008)
over the numerical inversion results ψwD , then the dimension-
less rate can be solved with Eq. (54) and Stehfest numerical
inversion algorithm. The numerical Laplace transform can be
expressed as follows:

ψwD(s) =
1
s2


ψ ′wD(1)

[
1− e−stD(1)

]
+∑

n−1
i=2 ψ ′wD(i)

[
e−stD(i−1)− e−stD(i)

]
+ψ ′wD(n)e

−stD(n)

 (54)

ψ
′
wD(i) =

ψwD(i)−ψwD(i−1)
tD(i)− tD(i−1)

(55)

5. Results and discussion

5.1 Type curves and interpretation

The code is programed by Matlab2017b. The numerical
integration, Stehfest numerical inversion algorithm are used
for wellbore pressure and rate solutions in real space. The
type curves of composite TGR with stress-sensitivity effect are
shown in Figs. 3-5. Fig. 3 shows some classical flow regimes.
Fig. 4 and Fig. 5 show all flow regimes.

Different flow regimes are identified based on the type
curves.

Regime 1: The early wellbore storage period. The slope
is 1 in pressure and pressure derivative curves in log-log
coordinates, and in rate and rate derivative curves the slope
becomes -1.

Regime 2: The skin factor period. This period is influenced
by the value of skin factor. The pressure derivative curves are
shown as convex.

Fig. 4. Pressure-transient-type curves of horizontal well.

Fig. 5. Rate-transient-type curves of horizontal well.
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Regime 3: The first radial flow regime. In this regime,
the pressure derivative curve is shown as a level straight line,
the value of the level straight line is about 1/(4L1D) . The
production rate derivation curve is shown as a drawdown
straight line. The gas in this period flows to wellbore radially
in the vertical plane. It will last until the pressure wave spreads
to top/bottom boundary.

Regime 4: The linear flow regime. The pressure derivative
curve manifests as a straight line with a slope of 0.5. The pro-
duction rate derivative curve is shown as a level straight line.
This period reflects the linear flow feature around horizontal
wellbore.

Regime 5: The transfer regime in inner region. In this
regime both of the pressure derivative and production rate
derivative curves are manifested as the concave shape. This
period reflects that the cross flow between the matrix and
fractures systems in inner region begins.

Regime 6: The second radial flow regime. The pressure
derivative curve is shown as a level straight line, the value of
the level straight line is 0.5. The production rate derivation
curve is shown as a drawdown straight line.

Regime 7: Transition regime. It means the fluid of outer
region starts to flow to the inner region.

Regime 8: The transfer regime in outer region. In this
regime both of the pressure derivative and production rate
derivative curves manifest as the concave shape, which is a
typical characteristic for dual porosity media. The gas will
flow from matrix to fractures.

Regime 9: Late pseudo-radial flow regime. Following
regime 8, this regime starts when the gas flow from matrix
to fractures and that from fractures to wellbore reach a dy-
namic balance state. Due to the stress sensitivity, the pressure
derivative curves appear to be upward. If the stress sensitivity
is ignored, the value in pressure derivative curves is constant
which is M12/2 , and the production rate and rate derivative
curves are parallel.

5.2 Effect of relevant parameters

In this section, the influences of some relevant parameters
are discussed. During the discussion, one of the parameters is
changed while other parameters are controlled, and a series of
curves can be obtained to analyze.

(1) Effect of permeability modulus: Fig. 4 shows the effect
of permeability modulus γpD on PTA-type curves. As can be
seen in Fig. 4, when γpD increases, i.e., the stronger the stress-
sensitivity effect is, the greater the degree of upward. With the
increase of permeability modulus, the permeability of fracture
system becomes lower. Thus it’s more difficult to flow in the
formation for natural gas, which leads to lager drawdown
pressure in TGR. Fig. 5 shows the effect of permeability
modulus on RTA-type curves, from which we can see the
stronger stress-sensitivity effect causes lower production rate
for TGR.

(2) Effect of skin factor: Fig. 6 manifests the effect of skin
factor S on PTA-type curves. The skin factor mainly affects
regime 2. When the value of S is 0, the convex shape disappe-

Fig. 6. The effect of skin factor on pressure-transient-type curves.

Fig. 7. The effect of skin factor on rate-transient-type curves.

ars. When the skin factor increases, the resistance around
wellbore will increase, engendering greater difficulty for gas
stream to flow into the wellbore. Fig. 7 reflects the effect
of skin factor on RTA-type curves. The additional resistance
caused by skin factor will lead to the decrease of production
rate.

(3) Effect of inner region storage coefficient: Fig. 8 shows
the effect of inner region storage coefficient ω1 on PTA-type
curves. The inner region storage coefficient mainly affects
regime 3, regime 4 and regime 5. When the value of ω1
increases, the duration of regime 3 increases at the same time,
the starting time of regime 4 and regime 5 will be later.
And the bigger the ω1 is, the shorter time transfer regime
lasts, the narrower and shallower the concave shape is. The
similar results can be seen in RTA-type curves (Fig. 9). The
inner region storage coefficient ω1 reflects the storage capacity
of fracture system. The bigger value of ω1 indicates bigger
storage capacity of fractures and smaller storage capacity of
matrix respectively. When ω1 increases, the original stored
fluid in the fracture system flow to wellbore will last longer,
and the quantity of exchange between matrix and fracture
systems will be smaller.



294 Zhao, K. and Du, P. Advances in Geo-Energy Research 2019, 3(3): 287-303

Fig. 8. The effect of inner region transfer coefficient on pressure-transient-
type curves.

Fig. 9. The effect of inner region transfer coefficient on rate-transient-type
curve.

(4) Effect of outer region storage coefficient: The influ-
ence of outer region storage coefficient ω2 on pressure and
prodction rate is shown in Figs. 10 and 11, respectively.
It’s apprarent that the outer region storage coefficient mainly
affects regime 7 and regime 8. With the increase of the
parameter ω2, the transient regime lasts longer, therefore the
transfer regime of outer regime emerges later, the concave
shape is narrower and shallower at the same time. This result
is similar to part (3). So we can conclude that outer region
storage coefficient dominate the intensity of cross flow.

(5) Effect of inner region transfer coefficient: Fig. 12 indi-
cates the effect of inner region transfer coefficient λ1 on PTA-
type curves. It has been shown that the inner region transfer
coefficient λ1 mainly affects regime 5 and regime 6. A bigger
transfer coefficient λ1 results in relatively earlier beginning
time of regime 5 and longer time of regime 6. The second
radial flow period may be absent when λ1 is too small. The
smaller transfer coefficient leads to the transfer regime occours
more difficultly. From Fig. 13 we can notice that bigger
inner region transfer coefficient leads to bigger production rate
from production rate curves, and earlier beginning time of

the concave shape form production rate derivative curves. The
parameter λ1 means the difficulty level of the gas releasing
from matrix. When λ1 increases, more natural gas

Fig. 10. The effect of outer region storage coefficient on pressure-transient-
type curves.

Fig. 11. The effect of outer region storage coefficient on rate-transient-type
curves.

Fig. 12. The effect of inner region transfer coefficient on pressure-transient-
type curves.
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Fig. 13. The effect of inner region transfer coefficient on rate-transient-type
curves.

Fig. 14. The effect of outer region transfer coefficient on pressure-transient-
type curves.

Fig. 15. The effect of outer region transfer coefficient on rate-transient-type
curves.

can be produced from formation, so the production rate in
corresponding regime ascends.

Fig. 16. The effect of mobility ratio on pressure-transient-type curves.

Fig. 17. The effect of mobility ratio on rate-transient-type curves.

(6) Effect of outer region transfer coefficient: Figs. 14 and
15 reflects the effect of outer region transfer coefficient λ2 on
PTA-type curves and RTA-type curves respectively. From the
figures we can see the parameter λ2 mainly affects regime 7
and regime 8. The results in outer region is akin to the results
obtained in inner region. Hence the parameter λ2 dominates
the duration of regime 8 and regime 9, it also affects the
production rate.

(7) Effect of mobility ratio: Fig. 16 shows the effect of
the mobility ratio M12 on PTA-type curves. The mobility
ratio mainly affects regime 7, regime 8 and regime 9. When
the mobility ratio increases, the transient regime lasts longer
therefore regime 8 and regime 9 emerges later. Bigger mobility
ratio means it is more difficult for fluid to flow in outer region,
which results in the extension of transient period. On the
other hand, in fact, the value of the horizontal line of pressure
derivative curves in regime 9 is about M12/2, that’s why the
pressure derivative curves go upward when mobility ratio
increases. From Fig. 17 we can notice that bigger mobility
ratio leads to smaller production rate in regime 7 to regime
9.

(8) Effect of inner region radius: Fig. 18 shows the effect
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Fig. 18. The effect of inner region radius on pressure-transient-type curves.

Fig. 19. The effect of inner region radius on rate-transient-type curves.

of inner region radius r1D on PTA-type curves. It can be
seen that inner region radius mainly affects the regimes after
second radial flow regime. It’s apparent that if r1D increases,
the longer time to take for the pressure wave to reach the outer
region, so the regime 7 and regime 8 occurs later. The smaller
the radius of the inner region, the smaller the pressure loss at
the boundary of the inner and outer regions. Hence from Fig.
19 we can notice the production rate will increases if inner
region radius decreases.

(9) Effect of horizontal well position in vertical direction:
Fig. 20 manifests the effect of the parameter zwD on PTA-
type curves. Seen from Fig. 20, the horizontal well position
in vertical direction mainly affects the first radial flow regime.
When the horizontal well position in vertical direction zwD
decreases, i.e. the distance between the horizontal well and the
upper/bottom boundary decreases, the first radial flow regime
lasts shorter. Seen from Fig. 21, when the horizontal well
position in vertical direction zwD decreases, the production rate
will decrease in all time for well production lifetime, but the
difference is not apparent.

L1D= L2D=1;γρD=0; ω1=0.1; ω2=0.1; λ1=10-4; λ2=10-12;
S=1;CD=10-5;M12=4; η12=20; r1D=5000

Fig. 20. The effect of horizontal well position in vertical direction on pressure-
transient-type curves.

Fig. 21. The effect of horizontal well position in vertical direction on rate-
transient-type curves.

6. Conclusions
This paper deduced a mathematical model which considers

the transport mechanisms for tight gas including the unsteady
state cross flow, stress-sensitive effect, well storage effect and
skin effect. The results showed different flow regimes and the
influence of related factors on pressure and production per-
formance. From the above analysis, the following conclusions
can be summarized:

1) Type curves can be obtained through Stehfest numerical
inversion algorithm. Nine flow regimes are identified
based on the type curves including early wellbore storage
period, skin effect regime, first radial flow regime, linear
flow regime, transfer regime in inner region, second radial
flow regime, transition regime, transfer regime in outer
region, and late-pseudo radial flow regime.

2) In transfer regimes both of the pressure derivative and
production rate derivative curves manifest as the concave
shape. The stress-sensitivity effect leads to the upward of
pressure derivative curves and downward of rate curves.
When ignoring stress-sensitivity effect, the value in pres-
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sure derivative curves is constant which is M12/2 , and the
production rate and rate derivative curves are parallel.

3) The existence of stress-sensitivity effect leads to the
increase of pressure drawdown and the decrease of pro-
duction rate. Storage coefficient mainly influences the
intensity of cross flow. Transfer coefficient has significant
effects on the duration of transfer regimes. Horizontal
well position in vertical direction and inner region radius
have significant effects on first radial flow regime and
second radial flow regime respectively.

Nomenclature

Latin symbols

C = Wellbore storage coefficient, m3/Pa
Ct = Total compressibility coefficient, Pa−1

h = Reservoir thickness, m
k = Permeability, m2

L = Half-length of horizontal well, m
M = Mobility radio, dimensionless
n = Natural number (n = 0, 1, 2, · · · )
p = Pressure, Pa
Q = Production rate, m3/s
R = Radius of matrix block, m
r = Radial distance, m
S = Skin factor, dimensionless
s = Laplace transform variable
T = Absolute temperature, K
t = Time, second
x = Horizontal distance, m
y = Horizontal distance, m
Z = Gas deviation factor, dimensionless
z = Vertical distance, m

Greek symbols

ε = Tiny variable
γ = Permeability modulus, Pa−1

ω = Storage coefficient, dimensionless
λ = Transfer coefficient, dimensionless
η = Diffusion coefficient ratio, dimensionless
µ = Viscosity, Pa · s
φ = Porosity, fraction
ψ = Pseudo pressure, Pa2/(Pa · s)
ζ = Perturbation deformation function
ξ0 = Zero-order perturbation deformation function

Superscripts

¯ = Laplace transform domain
˜ = Finite Fourier transform domain
′ = Derivative

Subscripts

1 = Inner region
2 = Outer region

D = Dimensionless
f = Fracture system
h = Horizontal
i = Initial
m = Matrix system
sc = Standard condition
t = Total
v = Vertical
w = Wellbore
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Appendix A. Dimensionless definition

Table A-1. Dimensionless definition formulas.

Dimensionless variables Inner region Outer region

Dimensionless matrix pseudo pressure ψm1D =
k f hi1h(ψi−ψm1)

Qscµ1
ψm2D =

k f hi1h(ψi−ψm2)

Qscµ1

Dimensionless fracture pseudo pressure ψ f 1D =
k f hi1h(ψi−ψ f 1)

Qscµ1
ψ f 2D =

k f hi1h(ψi−ψ f 2)
Qscµ1

Transfer coefficient λ1 =
km1L2

k f hi1R2
1

λ2 =
km2L2

k f hi2R2
2

Storage coefficient ω1 =
φ f 1Ct f 1

(φ1Ct1) f+m
ω2 =

φ f 2Ct f 2
(φ2Ct2) f+m

Dimensionless wellbore length L1D = L
h

√
k f vi1
k f hi1

L2D = L
h

√
k f vi2
k f hi2

Dimensionless time tD =
k f hi1

(φ1Ct1) f+mµ1L2 t

Dimensionless wellbore storage coefficient CD = C
2π(φ1Ct1) f+mhL2

Mobility ratio M12 =
k f hi1/µ1
k f hi2/µ2

Diffusion coefficient ratio η12 =
k f hi1/(φ1µ1Ct1) f+m
k f hi2/(φ2µ2Ct2) f+m

Dimensionless pseudo permeability modulus γpD = qscµ1
k f hi1h γp

Dimensionless length rmD = rm
R , rD = r

L , xD = x
L , yD = y

L , zD = z
h , εD = ε

h

Appendix B. Derivation of mathematical model

Inner region

Mathematical model of matrix system in inner region can be shown as follows:



lr
1

r2
m1

∂

∂ rm1

(
r2

m1km1
∂ψm1

∂ rm1

)
= φm1µ1Cm1

∂ψm1

∂ t

ψm1 (rm1,0) = ψi

∂ψm1

∂ rm1

∣∣∣∣
rm1=0

= 0

ψm1|rm1=R1
= ψ f 1

(B-1)

Substituting dimensionless variables into Eq. (B-1), the dimensionless flow model of matrix system can be expressed as:



lr
∂ 2ψm1D

∂ rm1D2 +
2

rm1D

∂ψm1D

∂ rm1D
=

1−ω1

λ1

∂ψm1D

∂ tD
ψm1D (rm1D,0) = 0

∂ψm1D

∂ rm1D

∣∣∣∣
rm1D=0

= 0

ψm1D|rm1D=R1D
= ψ f 1D

(B-2)

Taking following Laplace transform:

P(rD,zD,s) =
∫

∞

0
P(rD,zD, tD)e−stDdtD (B-3)
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The dimensionless mathematical model in Laplace space can be simplified as follows:

lr
∂ 2ψm1D
∂ rm1D2 +

2
rm1D

∂ψm1D
∂ rm1D

=
(1−ω1)s

λ1
ψm1D

ψm1D (rm1D,0) = 0

∂ψm1D
∂ rm1D

∣∣∣∣
rm1D=0

= 0

ψm1D|rm1D=R1D
= ψ f 1D

(B-4)

The solution of Eq. (B-4) is obtained:

ψm1D =

 sinh
(√

(1−ω1)s
λ1

rm1D

)
rm1D sinh

(√
(1−ω1)s

λ1

)
ψ f 1D (B-5)

For fracture system in inner region, the differential equation expressed as follows:

eγp(ψ f 1−ψi)
[

1
r

∂

∂ r

(
k f hi1r

∂ψ f 1

∂ r

)
+

∂

∂ z

(
k f vi1

∂ψ f 1

∂ z

)]
− 3

R1
km1

∂ψm1

∂ rm1

∣∣∣∣
rm1=R1

= φ f 1µ1Ct f 1
∂ψ f 1

∂ t
(B-6)

Substituting dimensionless variables into Eq. (B-6) yields:

e−γpDψ f 1D

(
∂ 2ψ f 1D

∂ rD2 +
1
rD

∂ψ f 1D

∂ rD
+L2

1D
∂ 2ψ f 1D

∂ zD2

)
−3λ1

∂ψm1D

∂ rm1D

∣∣∣∣
rm1D=1

= ω1
∂ψ f 1D

∂ tD
(B-7)

The Pedrosa (1986) presented a variable substitution technique to eliminate the nonlinearity of PDE, the substitution formula
is:

ψ f D =− 1
γpD

ln
[
1− γpDξ f D (rD, tD)

]
(B-8)

Taking the perturbation theory, which can be expressed as follows:

ξ f D = ξ f D0 + γpDξ f D1 + γ
2
pDξ f D2 + · · · (B-9)

1
1− γpDξ f D

= 1+ γDξβD +
(
γpDξ f D

)2
+
(
γpDξ f D

)3
+ · · · (B-10)

− 1
γpD

ln
[
1− γpDξ f D (rD, tD)

]
=− 1

γpD

[
−γpDξ f D−

1
2
(
γpDξ f D

)2− 1
3
(
γpDξ f D

)3−·· ·
]

(B-11)

Substituting Eqs. (B-8)-(B-11) into Eq. (B-7), and employing zero-order approximate solution (the dimensionless permeability
modulus is far less than 1), yields:

∂ 2ξ f 1D0

∂ rD2 +
1
rD

∂ξ f 1D0

∂ rD
+L2

1D
∂ 2ξ f 1D0

∂ zD2 −3λ1
∂ pm1D

∂ rm1D

∣∣∣∣
rm1D=1

= ω1
∂ξ f 1D0

∂ tD
(B-12)

Taking the Laplace transform over dimensionless time tD and substituting Eq. (B-5) into Eq. (B-12), we obtain:

∂ 2ξ f 1D0

∂ rD2 +
1
rD

∂ξ f 1D0

∂ rD
+L2

1D
∂ 2ξ f 1D0

∂ zD2 = f1ξ f 1D0 (B-13)

where:

f1 = sω1 +3λ1

√ (1−ω1)s
λ1

coth

√ (1−ω1)s
λ1

−1

 (B-14)

Taking the finite Fourier cosine transform over zD, yields:

P̃ =
∫ 1

0
P(rD,zD,s)cos(nπzD)dzD (n = 0, 1, 2, . . .) (B-15)
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yields:

∂ 2ξ̃ f 1D0

∂ rD2 +
1
rD

∂ ξ̃ f 1D0

∂ rD
= gn

1ξ̃ f 1D0 (B-16)

where:

gn
1 = f1 +n2

π
2L2

1D (n = 0, 1, 2, . . .) (B-17)

Outer region

Mathematical model of matrix system in outer region can be shown as follows:

lr
1

r2
m2

∂

∂ rm2

(
r2

m2km2
∂ψm2

∂ rm2

)
= φm2µ2Ctm2

∂ψm2

∂ t

ψm2 (rm2,0) = ψi

∂ψm2

∂ rm2

∣∣∣∣
rm2=0

= 0

ψm2|rm2=R2
= ψ f 2

(B-18)

Substituting dimensionless variables into Eq. (B-18), the dimensionless flow model of matrix system can be expressed as
follows: 

lr
∂ 2ψm2D

∂ rm2D2 +
2

rm2D

∂ψm2D

∂ rm2D
=

(1−ω2)η12

λ1

∂ψm2D

∂ tD
ψm2D (rm2D,0) = 0

∂ψm2D

∂ rm2D

∣∣∣∣
rm2D=0

= 0

ψm2D|r2D=R2D
= ψ f 2D

(B-19)

The dimensionless mathematical model in Laplace space can be simplified as follows:

lr
∂ 2ψm2D
∂ rm2D2 +

2
rm2D

∂ψm2D
∂ rm2D

=
(1−ω2)η12s

λ2
ψm2D

ψm2D (rm2D,0) = 0

∂ψm2D
∂ rm2D

∣∣∣∣
rm2D=0

= 0

ψm2D|r2D=R2D
= ψ f 2D

(B-20)

The solution of Eq. (B-20) is obtained as follows:

ψm2D =

 sinh
(√

(1−ω2)η12s
λ2

rm2D

)
rm2D sinh

(√
(1−ω2)η12s

λ2

)
ψ f 2D (B-21)

For fracture system in outer region, the differential equation expressed as follows:

eγp(ψ f 2−ψi)
[

1
r

∂

∂ r

(
k f hi2r

∂ψ f 2

∂ r

)
+

∂

∂ z

(
k f vi2

∂ψ f 2

∂ z

)]
− 3

R1
km2

∂ψm2

∂ rm2

∣∣∣∣
rm2=R2

= φ f 2µ2Ct f 2
∂ψ f 2

∂ t
(B-22)

Substituting dimensionless variables into Eq. (B-22) yields:

e−γpDψ f 2D

(
∂ 2ψ f 2D

∂ rD2 +
1
rD

∂ψ f 2D

∂ rD
+L2

2D
∂ 2ψ f 2D

∂ zD2

)
−3λ2

∂ψm2D

∂ rm2D

∣∣∣∣
rm2D=1

= ω2η12
∂ψ f 2D

∂ tD
(B-23)
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Taking the perturbation theory, yields:

∂ 2ξ f 2D0

∂ rD2 +
1
rD

∂ξ f 2D0

∂ rD
+L2

2D
∂ 2ξ f 2D0

∂ zD2 −3λ2
∂ pm2D

∂ rm2D

∣∣∣∣
rm2D=1

= ω2η12
∂ξ f 2D0

∂ tD
(B-24)

Taking the Laplace transform over dimensionless time tD and substituting Eq. (B-21) into Eq. (B-24), we obtain:

∂ 2ξ f 2D0

∂ rD2 +
1
rD

∂ξ f 2D0

∂ rD
+L2

2D
∂ 2ξ f 2D0

∂ zD2 = f2ξ f 2D0 (B-25)

where:

f2 = sω2η12 +3λ2

√ (1−ω2)sη12

λ2
coth

√ (1−ω2)sη12

λ2

−1

 (B-26)

Taking the finite Fourier cosine transform over zD, yields:

∂ 2ξ̃ f 2D0

∂ r2
D

+
1
rD

∂ ξ̃ f 2D0

∂ rD
= gn

2ξ f 2D0 (B-27)

where:

gn
2 = f2 +n2

π
2L2

2D (n = 0, 1, 2, . . .) (B-28)

Additional conditions

To solve the above equations, the inner boundary condition, outer boundary condition and two interface conditions are
necessary.

Inner boundary condition is described as:

lim
ε→0+

∫ zw+ε/2

zw−ε/2

[
eγp(ψ f 1−ψi)r

∂ψ f 1

∂ r

]
d zw|r=ε

=
pscT Qsc

2πk f hi1TscL
, |z− zw| ≤ ε/2 (B-29)

Top and bottom boundary conditions:

∂ψ f 1

∂ z

∣∣∣∣
z=h

=
∂ψ f 2

∂ z

∣∣∣∣
z=h

= 0 (B-30)

∂ψ f 1

∂ z

∣∣∣∣
z=0

=
∂ψ f 2

∂ z

∣∣∣∣
z=0

= 0 (B-31)

Infinite outer boundary condition:

lim
r→∞

ψ f 2(r, t) = ψi (B-32)

Interface conditions:

ψ f 1 (r1, t) = ψ f 2 (r1, t) (B-33)

k f hi1eγp(ψ f 1−ψi) ∂ψ f 1

∂ r

∣∣∣∣
r=r1

= k f hi2eγp(ψ f 2−ψi) ∂ψ f 2

∂ r

∣∣∣∣
r=r1

(B-34)
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The dimensionless equations can be obtained as:

lim
εD→0+

∫ zwD+εD/2

zwD−εD/2

(
e−γpDψ f 1DrD

∂ψ f 1D

∂ rD

)
d zw|rD=εD

=− 1
2L

, |zD− zwD| ≤ εD/2

∂ψ f 1D

∂ zD

∣∣∣∣
zD=1

=
∂ψ f 2D

∂ zD

∣∣∣∣
zD=1

= 0

∂ψ f 1D

∂ zD

∣∣∣∣
zD=0

=
∂ψ f 2D

∂ zD

∣∣∣∣
zD=0

= 0

lim
rD→∞

ψ f 2D (rD, tD) = 0

ψ f 1D (r1D, tD) = ψ f 2D (r1D, tD)

e−γpDψ f 1D
∂ψ f 1D

∂ rD

∣∣∣∣
rD=r1D

=
1

M12
e−γpDψ f 2D

∂ψ f 2D

∂ rD

∣∣∣∣
rD=r1D

(B-35)

Taking perturbation technique, Laplace transform and finite Fourier cosine transform, yields:

lim
rD→0+

rD
∂ ξ̃ f 1D0

∂ rD
=−cos(nπzwD)

2sL

lim
rD→∞

ξ̃ f 2D0 = 0

ξ̃ f 1D0 (r1D) = ξ̃ f 2D0 (r1D)

∂ ξ̃ f 1D0

∂ rD

∣∣∣∣∣∣
rD=riD

=
1

M12

∂ ξ̃ f 2D0

∂ rD

∣∣∣∣∣∣
rD=riD

(B-36)


