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Abstract:
The Peaceman well model has been an industrial standard in numerical reservoir simula-
tion. With the help of defined equivalent radius, the bottom-hole inflow or outflow flux is
calculated as being proportional to the difference between the bottom-hole pressure and
the well-grid block pressure. We show in this paper that, although the bottom-hole flux
is calculated accurately in the Peaceman well model, some significant errors of pressure
arise near the well for a large value of the length-to-width ratio of the mesh. We propose
two alternative methods, the source term compensation method and the pattern competition
method, both of which are based on an analytic solution induced by the source term for the
homogeneous case. In the source term compensation method, the auxiliary pressure, which
strictly satisfies the Laplace equation, is defined and solved instead of the original pressure
variable only satisfying the Poisson equation. In the pattern competition method, different
flow patterns including the linear flow pattern and radial flow pattern are considered. Each
flow pattern corresponds to an specific value of the transmissibility of the two adjacent
grid blocks. The smallest transmissibility will outcompete, and be used for solving the
discrete pressure equations. Numerical results show that not only the bottom-hole flux but
also the pressure fields can be calculated accurately using both of proposed methods.

1. Introduction
Numerical reservoir simulation for oil and gas production

must account for the presence of wells. It is necessary to use
grid blocks whose horizontal dimensions are much larger than
the diameter of a well. As a result of the traditional numerical
algorithm, the pressure calculated for a well block is greatly
different from the flowing bottom-hole pressure (BHP) of the
well. Well models are needed to relate these two different
pressures for the grid blocks where the wells are located
(Williamson, 1981).

Peaceman’s well model is usually the default one in a gen-
eral reservoir simulator. His model gave a proper interpretation
of a well-block pressure, and indicated how it relates to the
flowing BHP by introducing the concept of equivalent radius.
The initial Peaceman’s finite difference well model was for
the well located in the center of a square grid block for single
phase flow (Peaceman, 1978). It has been extended in var-
ious directions, including rectangular gridblocks, anisotropic
reservoirs, horizontal wells, wells located anywhere in the
grids, and multiphase flow, as well as incorporating the gravity
force, skin, and non-Darcy effects (Peaceman, 1983; Peace-
man, 1990; Peaceman, 1993; Palagi et al., 1994; Peaceman,
1994; Mochizuki et al., 1995; Peaceman, 1995; Ding, 1998;

Peaceman, 2003; Chen et al., 2009; Dumkwu et al., 2012;
Aavatsmark, 2016).

Some scholars pointed out that errors using standard (de-
fault) well indices are significant in many cases, especially
for the example involving a complex (herringbone) multilat-
eral well (Wolfsteiner et al., 2003). Durlofsky presented an
analytical model to approximate the productivity of vertical
wells in terms of an effective permeability coupled with a near-
well skin (Durlofsky, 2000). Ding and Jeannin pointed out that
truncation errors of the standard approach might be large in the
near well region due to the well singularity, and they proposed
a multi-point flux approximation to improve the accuracy for
the well flux calculation (Ding et al., 2007). Ding introduced
the layer potential for representing the 3D pressure distribution
in the vicinity of wells (Ding, 1996), and proposed the near-
well upscaling technique to improve the coarse-grid simulation
accuracy for well productivities (Ding, 2004). Similar local
grid refinements (LGR) methods are also employed to model
laminated reservoirs (Correia et al., 2018) and fractured porous
media (Fumagalli, 2010). Well models with high precision is
very helpful for building a simple model summarizing the
interwell connectivities and the associated drainage area of
each well before processing expensive and detailed multiphase
reservoir simulations (Noetinger, 2015; Mirzayev et al., 2019).
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In this paper, we will show that when the length-to-width
ratio of the mesh is large, even the single phase Peaceman
well model will cause some significant pressure errors near
the well. To improve the accuracy, two methods that can take
place of the Peaceman well model are proposed in the case of
homogeneous medium. The accuracy of the proposed methods
is indicated through numerical results.

The paper is organized as follows. In section 2, the original
Peaceman well model is reviewed. In section 3 and 4, the
source term compensation method and pattern competition
methods are introduced respectively. Numerical test is pro-
vided in section 5. Takeaways and potential extensions of the
proposed methods are discussed in section 6.

2. Brief review of peaceman well model
When modeling reservoir behavior by numerical methods,

inevitably the horizontal dimensions of any grid block con-
taining a well are much larger than the wellbore radius (See
Fig. 1). The traditional numerical algorithm provides the node
equation in the well grid for single steady flow:

q =
ρk
µ

[
∆y
∆x

(
p(i−1, j)+ p(i+1, j)

)
+

∆x
∆y

(
p(i, j−1)+ p(i, j+1)

)]
− 2ρk

µ

(
∆x
∆y

+
∆y
∆x

)
p(i, j)

(1)

where ρ is the density, k is the permeability, µ is the
viscosity, and ∆x, ∆y are the space steps in x and y directions,
respectively. q is the bottom-hole flow rate (The positive values
of q represent flow into the well, and negative values represent
flow out of the well). Obviously, the calculated well block
pressure p(i, j) will be greatly different from the bottom hole
pressure pw if using the node Eq. (1). A numerical well model
has to be constructed to relate the bottom-hole flow rate q to
the difference of the well block pressure and the bottom hole
pressure p(i, j)− pw . Then the concept of equivalent radius re
is introduced.

An equivalent radius re is defined for the well block, at
which the steady-state flowing pressure for the actual well
is equal to the numerically calculated pressure p(i, j). For the
incompressible steady radial flow described by the Laplace
equation d

dr

(
r d p

dr

)
= 0, the definition of re gives:

q =
2πρk

µ

[
p(i, j)− pw

]
ln
(
re
/

rw
) (2)

In the reference (Peaceman, 1983), Peaceman indicated
that for the well located in the center the rectangular well
block, the equivalent radius re can be calculated as:

re =
e−γ

4
(
∆x2 +∆y2)1/2 (3)

with γ = 0.5772 being the Euler’s constant. When ∆x = ∆y,
Eq. (3) provides re ≈ 0.2079∆x.

Eqs. (1)-(3) are just the Peaceman well model, which is the
standard and default one in the numerical reservoir simula-

Fig. 1. Block (i, j) containing a well and its four neighboring blocks.

tion. The reason why it is adopted widely is that it predicts
the bottom-hole flux rate q quite accurately.

Abou-Kassem and Aziz defined another equivalent radius
re,ana through analytic analysis (Abou-Kassem et al., 1985),
which is different from the re defined above. The “analytic
equivalent radius re,ana” can be obtained as described below.
According to the analytical solution induced by the source
term p= µq

2πρk lnr, the discrete pressures around the well block
can be expressed as:

p(i−1, j) = p(i+1, j) =
µq

2πρk
ln∆x,

p(i, j−1) = p(i, j+1) =
µq

2πρk
ln∆y

(4)

Substituting Eq. (4) into Eq. (1), we can obtain that:

p(i, j) =

qµ

2ρk

(
∆y

π∆x ln∆x+ ∆x
π∆y ln∆y−1

)
(

∆x
∆y +

∆y
∆x

) (5)

According to the definition of re,ana which implies p(i, j) =
µq

2πρk lnre,ana, the value of re,ana can be calculated as:

lnre,ana =

(
∆y
∆x ln∆x+ ∆x

∆y ln∆y−π

)
(

∆x
∆y +

∆y
∆x

) (6)

When ∆x = ∆y, Eq. (6) provides re,ana ≈ 0.1985∆x, which
is very close to the equivalent radius re ≈ 0.2079∆x defined by
Peaceman. However if ∆x 6= ∆y, the difference between re and
re,ana is significant, especially for the large ratio of ∆x

/
∆y.

We performed a simple test of the Peaceman well model
here. A well is located in the center of a circular region (see
Fig. 2a). In this article, we use lower-case letters to represent
the original variables, and the capital ones to represent their
corresponding dimensionless quantities. According to this con-
vention, the dimensionless radius of the region and the well in
this test is set as Rb = 1 and Rw = 10−5, respectively. The di-
mensionless pressures at the outer boundary and at the bottom-
hole are also given: P|R=Rb

= 0, P|R=Rw
= − 1

2π
ln
(
10−5).

Actually, this boundary condition just corresponds to the exact
solution of the dimensionless Poisson equation ∇2P = Qδ (R)
with its dimensionless source term strength Q = -1. That is,
P = Q

2π
lnR. This analytic solution will be used to check the

accuracy of Peaceman well model.
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(a) (b)

Fig. 2. Radial pressure distribution along the red line (shown in (a)) calculated from the Peaceman well model.

Table 1. The calculated dimensionless source strength Q under different grids (The exact value is Q = -1.).

Number of the grids The calculated value of Q when using
Re defined in Eq. (3)

The calculated value of Q when using
Re,ana defined in Eq. (6)

5 × 5 -1.0009 -0.9968

7 × 7 -1.0000 -0.9960

15 × 15 -1.0000 -0.9960

5 × 567 -0.9998 -1.3289

7 × 567 -1.0000 -1.2778

15 × 567 -1.0000 -1.1805

21 × 567 -1.0000 -1.1442

63 × 567 -1.0000 -1.0510

In Table 1, the calculated dimensionless source strength
Q is shown. It shows that Peaceman well model predicts the
source strength Q accurately. However, if using the analytic
equivalent radius Re,ana defined in Eq. (6), large errors would
be caused under the grids where ∆X 6= ∆Y . As mentioned
above, this is reason why Peaceman well model is widely
adopted.

In Fig. 2, the calculated dimensionless pressure distribu-
tions along the radial direction are shown for different grids
when using Peaceman well model. It can be seen that, although
the source strength Q is calculated accurately, there are still
some significant errors of the calculated pressure P at the grid
blocks near the well when the length-to-width ratio of the
mesh is large. In the next sections, we will propose two new
algorithms to improve the calculation.

3. Source term compensation method
Let’s recall Eq. (1) for the well block. When using Eq.

(1), it is implied that the pressure is distributed linearly in the
well block and its neighbors. Of course, it is not the case when
source term exists. For homogeneous case, since the analytic
Green’s function of the source term is known, one can intro-

Fig. 3. Sketch map of transforming the Poisson equation into the Laplace
one by defining the the auxiliary pressure P̃.

duce a compensatory term to obtain a new linearly distributed
pressure field. Then the new pressure field can be solved
accurately as usual using the traditional 5-point stencil. The
details are described as follow.

Let’s consider a 2D domain with several source terms, as
shown in Fig. 3. Due to the existence of the source terms, the
pressure distribution P(R) is far from linear, especially at the
area near the sources. Since the pressure induced by the source
term Qm can be expressed analytically as Pm = Qm

2π
lnRm +Cm

(the constant Cm can be omitted), one can introduce an
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auxiliary pressure P̃:

P̃ = P−∑
m

Pm = P−∑
m

Qm

2π
lnRm (7)

where Rm is the distance from the observed point to the
source Qm. Thus, the auxiliary pressure strictly satisfies the
Laplace equation ∇2P̃= 0 in the domain. The original pressure
variable P actually satisfies the Poisson equation ∇2P =

∑
m

Qmδ (R−Rm). The traditional 5-point stencil works well

for solving the auxiliary pressure:

∆Y
∆X

(
P̃(i−1, j)+ P̃(i+1, j)

)
+

∆X
∆Y

(
P̃(i, j−1)+ P̃(i, j+1)

)
−2
(

∆X
∆Y

+
∆Y
∆X

)
P̃(i, j) = 0

(8)

If all the source strength Qm are known, one can solve
Eq. (8) directly. Notice that in this situation, the boundary
conditions of the auxiliary pressure P̃ can be obtained directly
according to Eq. (7). After getting the auxiliary pressure P̃,
the original pressure field P can be calculated also according
to Eq. (7).

If not all the source strength Qm are known, it means that
the boundary conditions of the auxiliary pressure P̃ can not be
obtained directly from Eq. (7). Suppose Qk is unknown and
located in the cell (ik, jk); instead, the bottom hole pressure and
the well radius

(
Pw,k, Rw,k

)
are known. Eq. (8) only provides

the same number of equations as the number of nodes. One
additional equation is needed since an extra unknown variable
Qm is involved. This additional equation is just the fixed
bottom hole pressure condition of ith well, which is

P̃(ik, jk) = Pw,k− ∑
m 6=k

Qm

2π
lnR(ik, jk)

m − Qk

2π
lnRw,k (9)

where R(ik, jk)
m is the distance from the center of the grid (ik, jk)

to the location of the source Qm.

For each unknown Qk, a supplementary equation similar
as Eq. (9) can be obtained. Thus the total number of the
unknown variables including the set of discrete auxiliary
pressure {P̃(i, j)} and the set of unknown source terms {Qk}
matches the number of equations, then {P̃(i, j)} and {Qk} can
be solved out.

If performing this source term compensation method to
the problem described in Fig. 2a, the numerical results will
reproduce the analytic one. This is because the boundary
condition of the auxiliary pressure is just P̃

∣∣
rb
= 0, which leads

the solution P̃ = 0 of the Laplace equation ∇2P̃ = 0 even in
the discrete form. Another numerical test is performed and the
numerical results are compared to the Peaceman model in the
section 5.

4. Pattern competition method
When solving the Laplace or Poisson equations numeri-

cally, it is essential to determine the transmissibility of the
adjacent two grids. For example, in the traditional 5-point
stencil (see Fig. 4a), the dimensionless flux rate across the
interface AB can be approximated as QAB = ∆Y

∆X (Pl−Pr); that
is, the transmissibility TAB = ∆Y

∆X . Actually, this value of the
transmissibility is calculated under the linear flow pattern (See
Fig. 4a). Artus et al. pointed out that in the case of transient
flowing for the very low permeability of the formation, the
linear transmissibility derivations overestimate the production
forecast, and proposed a new approach for transmissibility
derivations based on numerical integrations of source point
solutions (Arus et al., 2012). We rewrite the transmissibility
for linear flow pattern as:

T (linear)
AB =

∆Y
∆X

, Q(linear)
AB = T (linear)

AB (Pl−Pr) (10)

If there is a source term Q locating in the domain (see Fig.
4b), the transmissibility can be calculated as following. The

(a) (b)

Fig. 4. Sketch map of calculating the transmissibility for linear flow pattern (a) and radial flow pattern (b).
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source term Q corresponds to the analytic solution P= Q
2π

lnR,
thus 

Pr =
Q
2π

lnRr

Pl =
Q
2π

lnRl

(11)

Then,

Q =
2π

lnRr
/

Rl
(Pr−Pl) (12)

The flux flow rate across the interface AB can be calculated
according to the analytic solution P = Q

2π
lnR.

Q(radial)
AB =−

∫ Y0+
∆Y
2

Y0− ∆Y
2

∂P
∂X

∣∣∣∣
X=X0

dY =− Q
2π

∫ Y0+
∆Y
2

Y0− ∆Y
2

X0

X2
0 +Y 2 dY

=− Q
2π

arctg
Y
X0

∣∣∣∣Y0+
∆Y
2

Y0− ∆Y
2

(13)

Combing Eq. (12) and Eq. (13), one can obtain the trans-
missibility under radial flow pattern:

Q(radial)
AB = T (radial)

AB (Pl−Pr) ,

T (radial)
AB =

1
ln
(
Rr
/

Rl
) arctg

Y
X0

∣∣∣∣Y0+
∆Y
2

Y0− ∆Y
2

(14)

It is necessary to point out that when ∆X
/

R0 → 0 and
∆Y
/

R0→ 0, T (radial)
AB = T (linear)

AB .
Proof. According to the L’Hospitals Rule, for a given R0, when
∆X → 0 and ∆Y → 0, we have:

lim
∆X→0
∆Y→0

T (radial)
AB = lim

∆X→0
∆Y→0

1
ln(Rr/Rl )

arctg
Y
X0

∣∣∣∣Y0+
∆Y
2

Y0− ∆Y
2

= lim
∆X→0
∆Y→0

1

ln

√
(X0+∆X/2 )2+Y 2

0√
(X0−∆X/2 )2+Y 2

0

arctg
Y
X0

∣∣∣∣Y0+
∆Y
2

Y0− ∆Y
2

= lim
∆X→0

1
∆X

ln
√

(X0+∆X/2 )2+Y 2
0 −ln

√
(X0−∆X/2 )2+Y 2

0
∆X

lim
∆Y→0

∆Y
arctg Y

X0

∣∣∣Y0+
∆Y
2

Y0− ∆Y
2

∆Y

= lim
∆X→0

2

∆X
[
ln
(
X2 +Y 2

0

)]′
X=X0

lim
∆Y→0

∆Y
(

arctg
Y
X0

)′
Y=Y0

= lim
∆X→0
∆Y→0

∆Y
∆X

= lim
∆X→0
∆Y→0

T (linear)
AB

(15)

End proof.
Eq. (15) confirms that when the grid block sizes ∆X and

∆Y are small enough, one will get the same numerical results
whether using the transmissibility Eq. (10) of the linear flow
pattern or Eq. (14) of the radial flow pattern. The problem now
is that when the grid size ∆X and ∆Y are of limited values,
which transmissibility should be used. Another equivalent
problem is when several source terms exist, which transmis-
sibility should be used. A conservative choice is the smallest
one (Notice that all the transmissibilities are positive). This is
why we call this algorithm Pattern Competition Method.

Suppose several source terms exist in the domain. Each
transmissibility for the corresponding source is calculated.
All the transmissibilities including the one of the linear flow
pattern compete with each other, and the smallest one will
outcompete. Actually, the transmissibility of the source flow
pattern always outcompetes near the corresponding well. At
the area far from the wells, all the transmissibilities of the

different flow patterns are almost the same according to Eq.
(15). This discrete scheme based on the radial analytic solution
is like the scheme in the references (Weber, 2004; Ribeiro,
2014), and also can be seemed as a variety of Finite Analytic
Method (Liu, 2013).

5. Numerical test
The second numerical test is performed in this article. As

shown in Fig. 5, there are three wells locates in a rectangle
domain. The dimensionless outer boundary pressures, the
location of wells, the bottom-hole radii and pressures are
also shown in Fig. 5. The three methods, the Peacman well
model, the source term compensation method and the pattern
competition method are used respectively, and their calculation
results are provided in Table 2 and Fig. 6.

The calculated flux rate of each well is given in Table 2.
It is shown that all the three methods can calculate bottom-
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Fig. 5. Sketch map of the numerical test example where three source terms locate in the domain.

Fig. 6. Radial pressure distribution along the red, blue and green line in Fig. 5.
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Table 2. The comparison of the calculated dimensionless source strength Q1, Q2, Q3 under different grids by using the three methods: the Peaceman well
model, the source term compensation method and the pattern competition method.

Number of the grids the Peaceman well model the source term compensation method the pattern competition method

Q1 = 0.53075 Q1 = 0.53088 Q1 = 0.52580

270×6 Q2 =−0.56632 Q2 =−0.56629 Q2 =−0.56117

Q3 = 0.36998 Q3 = 0.36992 Q3 = 0.36998

Q1 = 0.53106 Q1 = 0.53108 Q1 = 0.52623

270×18 Q2 =−0.56656 Q2 =−0.56656 Q2 =−0.56161

Q3 = 0.36991 Q3 = 0.36990 Q3 = 0.36991

Q1 = 0.53109 Q1 = 0.53109 Q1 = 0.52586

270×30 Q2 =−0.56658 Q2 =−0.56658 Q2 =−0.56125

Q3 = 0.36991 Q3 = 0.36990 Q3 = 0.36666

Q1 = 0.53110 Q1 = 0.53110 Q1 = 0.52536

270×42 Q2 =−0.56659 Q2 =−0.56659 Q2 =−0.56074

Q3 = 0.36990 Q3 = 0.36990 Q3 = 0.36635

Q1 = 0.53366 Q1 = 0.5311 Q1 = 0.52632

6×270 Q2 =−0.56897 Q2 =−0.56777 Q2 =−0.56269

Q3 = 0.37048 Q3 = 0.37013 Q3 = 0.36718

Q1 = 0.53138 Q1 = 0.53118 Q1 = 0.52632

18×270 Q2 =−0.56684 Q2 =−0.56669 Q2 =−0.56182

Q3 = 0.36994 Q3 = 0.36992 Q3 = 0.36698

Q1 = 0.53120 Q1 = 0.53113 Q1 = 0.52637

30×270 Q2 =−0.56668 Q2 =−0.56662 Q2 =−0.56180

Q3 = 0.36992 Q3 = 0.36991 Q3 = 0.36700

Q1 = 0.53115 Q1 = 0.53112 Q1 = 0.52635

42×270 Q2 =−0.56663 Q2 =−0.56661 Q2 =−0.56175

Q3 = 0.36991 Q3 = 0.36991 Q3 = 0.36698

hole flux rate quite accurately. But for the calculation of
the pressure in Peaceman well model, there are still some
significant errors near the well, as shown in Fig. 6. For the
proposed source term compensation method and the pattern
competition method, both the bottom-hole flux rate and the
pressure can be calculated accurately.

6. Discussion
In this paper, we figured out that for the widely used

Peaceman well model, there are significant errors of pressure
near the well for the large value of the length-to-width ratio
of the mesh. Two methods, the source term compensation
method and the pattern competition method are proposed for
the homogeneous medium that can take place of the Peaceman
well model. Both the two methods can calculate bottom-
hole flux rate and the pressure accurately for all the different
grids. It is also found out that the simulation results of the
source term compensation method are more accurate than
the pattern competition method (see Fig. 6). However, the
source term compensation method is difficult to be extended
to heterogeneous medium, since the analytic Green function
in heterogeneous medium is not available at present. On the

other hand, the pattern competition method is more flexible
and easier to be extended to heterogeneous cases. It is also
suitable even for unstructured grids. Relevant issues for the
extension of the proposed method to complex wells and to
heterogeneous media are in the scope of future study.
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