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Abstract:
Digital rock analysis is a promising approach for visualizing geological microstructures and
understanding transport mechanisms for underground geo-energy resources exploitation.
Accurate image reconstruction methods are vital for capturing the diverse features and
variability in digital rock samples. Stable diffusion, a cutting-edge artificial intelligence
model, has revolutionized computer vision by creating realistic images. However, its
application in digital rock analysis is still emerging. This study explores the applications of
stable diffusion in digital rock analysis, including enhancing image resolution, improving
quality with denoising and deblurring, segmenting images, filling missing sections,
extending images with outpainting, and reconstructing three-dimensional rocks from two-
dimensional images. The powerful image generation capability of diffusion models shed
light on digital rock analysis, showing potential in filling missing parts of rock images,
lithologic discrimination, and generating network parameters. In addition, limitations in
existing stable diffusion models are also discussed, including the lack of real digital rock
images, and not being able to fully understand the mechanisms behind physical processes.
Therefore, it is suggested to develop new models tailored to digital rock images for further
progress. In sum, the integration of stable diffusion into digital core analysis presents
immense research opportunities and holds the potential to transform the field, ushering in
groundbreaking advances.

1. Introduction
Digital rock analysis presents the microstructure of under-

ground rocks by digital scanning and three dimensions (3D)
reconstruction of core samples, to achieve accurate description
and prediction of reservoir properties (Li et al., 2023). It
plays an irreplaceable role in the study of unconventional
reservoirs with complexity and heterogeneity, such as tight
sand and shale (Goral et al., 2020). The essence of digital
core technology lies in its image generation and processing
capabilities (Zha et al., 2021). In order to accurately capture
the pore network and particle distribution inside the rock,
advanced image reconstruction techniques are required, to
provide a 3D visualization of the rock samples and data
support for analyzing the geometric characteristics (Liao et

al., 2022).
Enhancing image resolution, identifying lithology, and

reconstructing 3D digital rocks are critical for advancing
digital rock analysis beyond traditional methods’ limitations
(Li et al., 2023). Recent advancements in deep learning have
significantly contributed to these areas. Due to limitations
inherent in imaging technologies like micro-computed to-
mography (micro-CT), high-resolution images often feature a
smaller field of view, whereas images with larger fields of view
tend to have lower resolution (Ahuja et al., 2022). To address
this challenge, super-resolution convolutional neural networks
in deep learning, alongside derivative algorithms such as
enhanced deep super-resolution network and widely activated
super-resolution network, have proven effective in enhancing
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micro-CT image resolution for sandstone and carbonate rocks,
improving quality by 3-5 dB and reducing errors by 50%-
70% compared to bicubic interpolation methods (Wang et
al., 2019). For lithological identification, Convolutional Neural
Network (CNN) models have been utilized for geological
facies classification in well logging, suitable for conventional
well logging data processing, providing a robust method for
lithology identification (Imamverdiyev and Sukhostat, 2019).
Li et al. (2024) proposed a hybrid model integrating CNN
with Support Vector Machine for shale reservoir lithology
identification, achieving 91.95% accuracy across three litholo-
gies: Mudstone, shale, and sandstone, demonstrating superior
generalization capabilities. In 3D digital rock reconstruction,
traditional methods face challenges such as cost and accuracy
limitations (Zhao et al., 2021). Deep learning techniques
like Generative Adversarial Networks (GAN) and Variational
Autoencoders (VAE) can generate realistic rock samples from
extensive image datasets, improving reconstruction efficiency
and accuracy (Chi et al., 2023). Feng et al. (2020) employed
GAN for 3D digital rock reconstruction from 2 dimensions
(2D) slices, demonstrating faster reconstruction speeds com-
pared to traditional methods. GAN has been a common choice
in digital rock image generation (Liu et al., 2024), It consists
of two components, a generator and a discriminator, both
engaging in competition to acquire the ability to generate high-
quality images. However, despite the success of GAN in some
applications, their limitations are becoming apparent in the
field of digital core. As it involves the simultaneous training
of two networks, problems such as mode collapse often occur,
which leads to a lack of diversity in the generated rock images.

Stable diffusion (SD), as a kind of latent diffusion models,
since its first release in August 2022, has rapidly emerged in
the field of artificial intelligence-generated content (AIGC).
Compared with GAN, SD uses an autoregressive training
process that does not involve a zero-sum game between two
networks, and the training process is relatively more stable.
It is gradually showing the trend of replacing traditional
GAN with its excellent image generation ability and wide
range of application scenarios. In the generation process, SD
iteratively transforms the noisy image into the target image,
which is a more controllable and stable process (Croitoru
et al., 2023), and is less likely to produce the pattern noise
problem. In addition, since SD is based on Markov chains,
the generated samples can cover the entire data distribution,
the results tend to be more diverse (Gong et al., 2023).
One of the most significant advantages of SD over many
other generative models (e.g., Midjourney, Dall-E, etc.) lies
in its open-source nature, which means that researchers can
further investigate its internal working mechanism and extend
it with new modules according to specific needs. It is also
highly extensible, which includes facilitating the integration of
super-resolution algorithms to enhance image quality further,
leveraging ControlNet for finer control over the generation
process, and amalgamating data from various modalities for
multi-modal generation. It can also be extended to the field of
video generation to produce high quality video content, which
has wide application in various domains including illustration,
game design, and electronic commerce.

Despite these advancements, the application of SD in
digital rock remains sparse and incomplete. Only two articles
have been reported for the application of SD in the field of
digital rock analysis, to the best of our knowledge. Ma et
al. (2023a) proposed the concept of utilizing SD as a data
augmentation technique, generating new images akin to the
original dataset by simulating the process of adding and elim-
inating random noise. Applied to image segmentation tasks
in digital rock physics, this method significantly enhances the
segmentation performance of neural network models such as
U-Net, Attention-U-Net, and TransUNet, particularly adept
at handling images with intricate pore morphology. Ma et
al. (2023b) utilized SD to enhance micro-CT image resolution
of rock samples, which employs progressive diffusion noise
processing and cascaded diffusion models for accelerated
training and high-fidelity image production. They explored
SD’s application in single-image super-resolution, introducing
shortcut sampling for diffusion. Additionally, they discussed
using diffusion models in blind super-resolution methods,
emphasizing their effectiveness in capturing long-range depen-
dencies in images. The limited number of studies indicates
that there is still much unexplored potential in this field.
Many functionalities of SD have yet to be fully explored and
developed for digital rock analysis. Future research should
focus on further exploring the capabilities of SD in enhancing
rock image resolution, denoising, image expansion, and other
related tasks. Additionally, there is a need to address the
challenges associated with the application of SD in digital
rock.

In this study, the principle of SD for image generation and
its application in digital rock analysis are explored (Fig. 1).
The basic principle of SD image generation is to start from
pure Gaussian noise and gradually denoise to reconstruct the
image. Its potential applications in the digital rock domain
include enhancing image resolution, denoising, image expan-
sion, text to image, and digital core reconstruction from 2D
to 3D, etc. For super-resolution reconstruction and improving
image quality through denoising, the results show that SD is
more capable of restoring the details and realism of digital
rock images while preserving the structure of the original
image. Also, it is observed that SD shows good performance
in image expansion tasks, which brings a new perspective to
digital core analysis. It has the potential to rapidly extend the
generation of full-field data using local information, thereby
reducing scanning costs. The text to image function of SD also
provides a new approach for generating digital core images by
given prompts. Due to the lack of generalization ability of pre-
trained models in the digital core domain, there is still a need
to fine-tune or retrain the models in terms of rebuilding 3D dig-
ital rock based on 2D images. Further investigation reveals the
possibilities of diffusion models for filling in missing images,
lithologic discrimination, and even in designing algorithms.
It is found that diffusion models themselves are undergoing
continuous development and optimization. In sum, SD shows
promising applications in the field of digital core analysis.
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Diffusion models

Fig. 1. Diagram of the generating digital rock images using stable diffusion.

2. Method
The wide application of SD benefits from the theoretical

support of diffusion models. At present, diffusion models
can be categorized into three groups (Yan et al., 2024): De-
noising diffusion probabilistic models (DDPM), score-based
generative models, and stochastic differential equations (SDE).
DDPM achieves efficient and high-quality sample generation
by introducing time-dependent noise and variational lower
bound optimization objectives. Here, DDPM will be taken as
the main entry point to explore the fundamentals of diffusion
models.

DDPM is a generative model based on a diffusion process,
which learns the essential features of the data distribution
through stepwise noise addition and denoising process, to
generate samples similar to the original data distribution (Ho
et al., 2020). It comprises two parameterized Markov chains:
A forward process and a reverse process. Utilizing variational
inference, it generates samples that align with the original data
distribution within a finite timeframe (Fig. 2).

In the forward process, given the initial data distribution
x0 ∼ q(x), for time t ∈ [1,T ], DDPM will gradually increase
Gaussian noise according to the xt−1 obtained from the previ-
ous step as (Chang et al., 2024):

xt =
√

βt × εt +
√

1−βt × xt−1, ε ∼ N (0,I),
0 < β1 < β2 < β3 < βt−1 < βt < 1

(1)

where εt is the noise obtained by random sampling based on
the standard normal distribution. βt ∈ (0,1) is the variance
used for each step. The variances of different steps are set in
advance as a variance schedule, β is gradually incremented in
each step, indicating that the diffusion speed becomes faster.
When the diffusion steps T is large enough, the final image
xT converges to a pure noise (Ho et al., 2020). Since the low

efficiency of stepwise iteration, αt := 1−βt and αt :=
t

∏
s=1

αs

are introduced. After reparameterization, the entire forward
process can be described as:

q(xt |x0) = N
(
xt ;

√
ᾱtx0,(1−α t)I

)
(2)

where I is an identity matrix with the same dimension as x0.
In this way, given x0, the denoised image xt can be obtained
at any time.

The reverse process starts at xT ∼ N(0, I) and denoising is
performed as (Mao et al., 2023):

xt−1 =
1

√
αt

[
xt −

1−αt√
1− ᾱt

εθ (xt , t)
]
+σtz, σt ∼ N(0,1),{

z ∼ N (0,I), t > 1
z = 0, t ≤ 1

(3)
where εθ (xt , t) is the model that estimates the noise from xt
and t, and θ is the training parameter for the model, σt is a
hyperparameter that follows a normal distribution, and z is a
Gaussian noise. The whole reverse process can be represented
as:

pθ (xt−1|xt) = N
(
xt−1; µθ (xt , t) ,σ2

t I
)

(4)
In order to make the generated image match the training

data distribution as closely as possible, εθ (xt , t) needs to be
trained so that its prediction ε̂ is similar to the true ε . The
solution of minimizing the usual variation bound on negative
log likelihood is used in DDPM:

Eq[DKL(q(xT | x0)∥p(xT ))︸ ︷︷ ︸
LT

+ ∑
t>1

DKL(q(xt−1 | xt ,x0)∥pθ (xt−1|xt))︸ ︷︷ ︸
Lt−1

− log pθ (x0|x1)︸ ︷︷ ︸
L0

]
(5)

where Kullback-Leibler (KL) divergence is used to compare
pθ (xt−1|xt) with forward process posteriors. As all KL di-
vergences in Eq. (5) involve comparisons between Gaussians,
they can be computed in a Rao-Blackwellised manner using
closed form expressions. Since LT is an independent constant
with no reliance on θ , it can be ignored during training. Ho
et al. (2020) used an independent discrete decoder derived

from N

(
x0; µθ (x1,1) ,∑

θ

(x1,1)
)

to simulate L0. In actual

training, they found the following variant of the variational
bounds beneficial for sample quality:

Lsimple (θ) := Et,x0,ε

[∥∥∥ε − εθ

(√
ᾱtx0 +

√
1− ᾱtε, t

)∥∥∥2
]
(6)

Therefore, DDPM takes Eq. (6) as loss function and uses
U-Net to train the noise parameters.
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Fig. 2. Process of DDPM.

As a practical application software of diffusion models,
SD introduces VAE to achieve the mapping of images to
low-dimensional latent space (Rombach et al., 2022), thereby
enhancing the efficiency of image generation and processing.
Furthermore, SD incorporates modules such as cross-attention
layers and the contrastive language-image pre-training text
encoder to enhance its adaptability to textual inputs. The SD
network structure orchestrates the interaction between input
data, conditioning mechanisms, denoising U-Net, and latent
space to enable the generation of high-quality images.

3. Applications and results

3.1 Super-resolution
In the process of digital rock imaging and data processing,

resolution plays a pivotal role in capturing image details and
ensuring the precision of subsequent analyses. High-resolution
digital rock images are instrumental in accurately discerning
minute features and variations in the core, which is crucial to
the study of physical properties of rocks, fluid flow behavior
and reservoir evaluation (Chen et al., 2020). By continuously
optimizing imaging techniques to enhance the resolution of
rock images, significant strides will be made in acquiring more

precise and reliable geological information, thereby enhancing
the efficacy of oil and gas exploration (Shan et al., 2022).

Diffusion models provide an innovative solution for image
super-resolution reconstruction. When generating an image,
the random walk process is iteratively executed in diffusion
models, and at each iteration, the pixel values are updated
with specific transition probability based on the current pixel
value and the state of the surrounding pixels (Xie et al., 2023).
Thus, they can progressively increase the details and clarity on
low-resolution images, ultimately generating high-resolution
images. During this process, they can learn more structural
information from the input image and try to maintain these
structures as much as possible while enhancing the resolution.
Therefore, they can generate more natural image reconstruc-
tion results and reduce the potential introduction of artifacts
and distortions (Zeng et al., 2023). Additionally, the diffusion
models can better handle nonlinear transformations in images,
making them more suitable for processing complex images.
Furthermore, their strong scalability enables them to integrate
with other techniques to achieve higher quality production of
rock images.

It is a technical challenge to improve the efficiency and e-
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Table 1. Stable diffusion parameters for image generation.

Method Parameters Value

SD

Sampler DPM++2M SDE
Karras

Image size 960×800

Steps 49

CFG scale 1.5

Denoising strength 0.03

Tiled diffusion

Method MultiDiffusion

Latent space
block size

96×96

Latent space
block overlap

78

Latent space
block batch size

4

Tiled VAE
Encoder block size 3,072

Decoder block size 192

nsure the quality of large rock image processing. Tiled dif-
fusion and tiled VAE, as an extended application of SD,
can ensure the overall picture quality while achieving the
efficient use of computing resources. Tiled diffusion (Bar-
Tal et al., 2023) is an image generation method based on
diffusion models. It adopts a block-based processing approach,
and utilizes two state-of-the-art diffusion tiling algorithms (i.e.,
mixture of diffusers and multi-diffusion), as well as the tiled
VAE algorithm and tiled noise inversion. The method divides
the image into multiple small blocks/tiles and applies inde-
pendent diffusion processes to each small block. Then, it uses
information from neighboring small blocks as conditions to
aid in generation. This local contextual condition significantly
enhances the generated results, maintaining the coherence of
the image while efficiently optimizing graphics memory usage.

Tiled diffusion and tiled VAE are applied to the restore
task of SD combined with the Swin-Conv-UNet (SCUNet)
super-resolution algorithm. Realistic Vision V2.0 is chosen as
the base model, and the DPM++ 2M SDE Karras sampler
is adopted. In the image restoration process, the denoising
strength parameter determines how much the model depends
on the original image when generating. By adjusting it, a
balance can be struck between preserving image details and
avoiding excessive smoothing. The denoising strength is fi-
nally set to 0.03 for performing high-definition restoration on
10 sets of crack scanning electron microscope (SEM) images.
SCUNet is a deep learning model designed for image super-
resolution reconstruction (Zhang et al., 2023a). By learning
the mapping relationship between numerous low-resolution
images and high-resolution images, it can transform low-
resolution images into high-resolution ones. SD and SCUNet
are integrated to achieve a comprehensive image enhancement
process. Initially, SD is employed to denoise and enhance
the input image. Subsequently, the image processed by SD

is fed into SCUNet. By leveraging SCUNet’s powerful super-
resolution reconstruction capability, the image is further en-
larged and refined. The generation parameters of stable diffu-
sion are listed in Table 1.

A total of six algorithms, i.e., nearest interpolation, Lanc-
zos interpolation, enhanced super-resolution GAN (ESRGAN),
blind super-resolution GAN (BSRGAN), SD and SD com-
bined with SCUNet, were used to restore the SEM images
(Fig. 3), and the key parameters are listed in Table 2.

To quantitatively evaluate the image quality, the structural
similarity (SSIM) and peak signal-to-noise ratio (PSNR) are
compared in Table 3. SSIM is a quality assessment metric
based on structural similarity, which measures the similarity
between the original image and the distorted image by compar-
ing the luminance, contrast, and structural information of the
images. PSNR is an objective quality assessment metric based
on pixel differences, which quantifies the loss of image quality
by calculating the mean square error between the original
image and the distorted image. In general, a larger value of
SSIM or PSNR indicates better image quality. The mean and
standard deviation of SSIM and PSNR for 10 sets of images
are calculated, utilizing scaling factors of 2, 4, and 8 times.
The bold value means the best result in all algorithms.

Permeability values are then investigated to further com-
pare different super-resolution approaches from the perspec-
tive of pore structure. Specifically, the images in Fig. 4
are translated to binary images using certain threshold such
that the porosity values are the same for all images after
binarization. Then, the permeability is computed by solving
Stokes flow equation, assuming a constant pressure difference,
and hence the permeability is proportional to the flow rate. The
permeability values for different images are: High-resolution
2.51 D, low-resolution 5.12 D, nearest 2.39 D, Lanczos 2.96
D, BSRGAN 2.26 D, SD 2.62 D, where D means Darcy. It can
be seen that compared to the true reference (high-resolution
value) the SD provides the closest estimation, followed by
the nearest interpolation. The low-resolution yields the largest
error, as anticipated. More parameters for pore structure rep-
resentation, e.g., pore throat size distribution, will be further
analyzed in the future.

These results reveal that compared to traditional
interpolation-based super-resolution algorithms (e.g., nearest
interpolation), SD does not simply smooth the image by
interpolation when upscaling images. Instead, it is capable
of learning complex structures and information within the
image and retains these details throughout the upscaling
process. In contrast to other super-resolution algorithms like
BSRGAN, the employment of SD for image enlargement
typically mitigates the occurrence of excessive smoothing
artifacts. This ability facilitates the generation of more natural
image content while effectively enhancing resolution. Through
comprehensive analysis, it can be concluded that SD not only
maintains the good effect of SSIM and PSNR metrics but also
better retains the structure of the original image, enhances
details, and exhibits greater authenticity.
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Fig. 3. Super-resolution reconstruction results of SEM images.
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Fig. 4. Expansion of the sandpack image: The original image
is cut into 9 pieces and the center part is expanded to generate
the whole image.

3.2 Image expansion
Digital core analysis allows researchers to obtain de-

tailed structural and property information of cores in a non-
destructive way (Zhao et al., 2020). However, in practice,
due to physical limitations or the high cost of scanning
equipment, partial images of the core are typically obtained,
and the unknown areas exhibit some spatial randomness (Li
et al., 2023). In stable diffusion, the image expansion task

can be performed to extend the original image and generate
missing regions caused by equipment limitations. The model
first learns the statistical regularities of structures, colors, and
other features in images by training on a large dataset. Then,
during the completion process, it utilizes this prior knowledge
to predict and fill in missing areas, thereby generating visually
complete and consistent images. Currently, Image Expansion
shows broad application prospects in various fields such as
AIGC, film and television production and medical image
processing.

Sandpack and sandstone CT images are extended using
the inpaint model of stable diffusion ControlNet (Zhang et
al., 2023b). The inpaint model takes inputs including the
image to be extended and conditional inputs (such as textual
descriptions of the areas to be filled). Text is converted into
embedding vectors and then mapped to the internal represen-
tation of the inpaint model to add constraints, guiding the
generation of images consistent with the text descriptions.
Considering that the training image set of Realistic Vision may
not include core images, our own low-rank adaptation (LoRA)
was retrained. The parameters employed in the experiments are
listed in Table 4.

Subsequently, the trained LoRA is embedded into Realistic
Vision for fine-tuning, and ControlNet is incorporated for
further control. Compared to traditional methods of image
generation, ControlNet’s local inpaint model not only consid-
ers the information of the repaint area itself but also utilizes
contextual information from surrounding pixels to blend the
repaint area with the overall picture, helping to avoid obvious
seams and ensuring smooth transitions at the boundaries.

Realistic Vision serves as the base model, embedding the
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Table 2. Network structure parameters of super resolution algorithms.

Method Parameters Value

ESRGAN-Discriminator

Number of input channels 3

Number of base intermediate feature channels 64

Skip connection True

ESRGAN-Generator

Number of input channels 3

Number of output channels 3

Number of base intermediate feature channels 64

Number of convolutional layers 16

Scale factor 4

Activation function PReLU

BSRGAN-Discriminator

Number of input channels 3

Number of discriminator filters 64

Number of discriminator layers 3

Normalization type Batch normalization

Activation function LeakyReLU

BSRGAN-Generator

Number of input channels 3

Number of output channels 3

Number of base intermediate feature channels 64

Growth channels in ResidualDenseBlock 5C 32

Number of RRDB blocks 23

Scale factor 4

SCUNet

Number of input channels 3

Residual block configuration 2, 2, 2, 2, 2, 2, 2

Dimension of features 64

Activation function ReLU

trained LoRA and the control v11p sd15 inpaint model, and
expanding the images by 9 times (Figs. 4 and 5).

It can be observed that natural transitions in the boundary
regions of the expanded images are allowed by SD, enabling
fine adjustments and blending.

During the training process, it learns features from a
large amount of data, enabling it to recognize and understand
complex structures within images. Actually, the SD is not able
to reproduce the original image exactly (actually it would be
weird if it is able to), but the properties statistically estimated
from the expanded image are close to those from the original
image, e.g., porosity, permeability, and spatial relation. In the
task of image expansion, the model can utilize this learned
knowledge to generate content similar to the regularities of
the original image, inferring the whole from the parts, thereby
achieving high-quality image expansion.

3.3 Image denoising
The denoising of digital core images forms the basis

for subsequent image analysis. Denoising algorithms need to
remove noise while preserving as much detail as possible,
thus providing a clearer and more accurate dataset for further
research. The principle of denoising in the diffusion models is
mainly based on forward noise addition and reverse denoising
processes. In the forward process, the model gradually adds
noise to the image until it is nearly destroyed and becomes
almost pure noise, hiding useful information within the noise
(Pan et al., 2023). Then, in the reverse process, it learns the
probability distribution of pixel values in the image and uses
this distribution for denoising, continuously adjusting the pixel
values in the image to recover the original image from a state
of pure noise. This probabilistic approach ensures that the
denoising results are more natural and realistic.

Here, the noise ratio is set to 80%, and the white noise
process is applied to the sandstone images. Then, the noisy
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Table 3. Image quality assessment using different algorithms.

Algorithm
SSIM PSNR

×2 ×4 ×8 ×2 ×4 ×8

Nearest 0.755±0.136 0.731±0.126 0.742±0.120 29.638±2.913 28.629±2.608 27.828±1.922

Lanczos 0.778±0.127 0.759±0.120 0.776±0.111 30.643±3.028 29.631±2.751 28.675±1.911

ESRGAN 0.761±0.129 0.710±0.143 0.703±0.146 21.525±0.718 21.294±0.736 21.152±0.721

BSRGAN 0.787±0.115 0.769±0.113 0.775±0.107 29.607±2.286 28.385±2.130 26.829±1.380

SD 0.746±0.129 0.761±0.119 0.778±0.109 29.670±2.947 29.428±2.698 28.651±1.856

SD+SCUNet 0.791±0.113 0.774±0.122 0.790±0.104 29.679±2.142 28.908±2.405 28.700±1.538

Table 4. Parameters of LoRA network for image expansion.

Parameters Value

Image size 256×256

Data amount 400

Max epochs 20

Batch size 1

Learning rate 1.00×10−4

Learning rate scheduler Cosine with restarts

Learning rate warmup steps 0

Learning rate scheduler num cycles 1

Optimizer type AdamW8bit

Clip skip 2

Mixed precision Fp16

Network dim 32

Network alpha 32

image is denoised using SD, as well as mean filtering, Wiener
filtering, median filtering, and autoencoder (Fig. 6). For au-
toencoder, 700 sandstone images of size 240× 240 are used
for training. In the case of mean filtering, Wiener filtering,
and median filtering, the appearance of black borders around
the generated images is primarily due to the convolution
operation typically involved in traditional denoising methods.
During convolution operations, to ensure the correctness of
the algorithm and the handling of boundary pixels, the edges
of the image are often padded with zero values. Since zero
values typically correspond to black pixels in color images,
the edge areas of the image will exhibit black borders after
convolution processing. Therefore, when using such denoising
methods in practice, appropriate edge handling methods need
to be combined.

The SSIM and PSNR are calculated for SD (SSIM: 0.632,
PSNR: 11.211), mean filtering (SSIM: 0.392, PSNR: 10.785),
Wiener filtering (SSIM: 0.648, PSNR: 11.765), median filter-
ing (SSIM: 0.662, PSNR: 10.885), and autoencoder (SSIM:
0.638, PSNR: 12.486). And the results indicate that mean
filtering performs poorly, while the effect of SD is compar-

? ?

? ?

? ? ?

?

Original image Expanded image

Fig. 5. Expansion of the sandstone image: The original image
is cut into 9 pieces and the center part is expanded to generate
the whole image.

able to Wiener filtering, median filtering and autoencoder.
Through the analysis of denoising results, it is evident that
after mean filtering, a large number of noise points remain
uncleared from the image. After wiener filtering, burr and
roughness appear at the edge of the pore, which may affect
the accurate identification and analysis of pore structures.
After the application of median filtering, although most noise
points in the image are effectively removed, an over-smoothing
phenomenon occurs along the pore edges, resulting in the loss
of significant amounts of detailed information. Additionally,
some pores are mistakenly connected together, significantly
impacting the authenticity and accuracy of the pore network.
For autoencoder, the repaired images of the pore structure
have become distorted and blurred. However, while SD fails to
completely remove all noise points, it excels in preserving pore
details and authenticity. The image processed by SD exhibits
clearer pore edges, closely resembling the real microscopic
structure of sandstone, and avoids excessive smoothing along
the pore edges, thus retaining critical reservoir information.

In addition to binary images, the denoising capability of
SD is also tested using grayscale images (Fig. 7). In terms
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Fig. 6. Restoration of sandstone images by different denoising algorithms.

Original image Noisy image Stable diffusion

Mean filtering Wiener filtering Median filtering

Autoencoder

Fig. 7. Restoration of grayscale images by different denoising algorithms.

of quantitative metrics, the autoencoder performs well, with
restoration results numerically surpassing SD and conventional
filtering methods. However, its restored images do not well
preserve the morphological characteristics of cracks. Combin-
ing SSIM, PSNR and actual denoising results analysis, the SD
shows good performance in maintaining overall clarity and
image details.

3.4 Reconstruction from 2D to 3D
After obtaining the 3D digital rock model, researchers can

gain a better understanding of key parameters of reservoir such
as porosity and permeability, and thus predict and evaluate

oil and gas reserves and production capacity more accurately.
However, due to technological limitations or sampling costs,
the acquisition of 2D slice data in practical applications
is often limited. Therefore, the random reconstruction from
2D slices to 3D digital rock becomes particularly important
(Zheng and Zhang, 2022).

SD provides a new approach to the reconstruction of 2D
to 3D digital rock. Deforum, an SD-based video generation
plugin, can generate a consecutive sequence of images and
compile them into a video, solely relying on textual de-
scriptions or reference images as its foundation (Hu, 2023).
In Deforum, users can describe the visuals of key frames
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Frame 6 Frame 87Original image

Fig. 8. Generated images of different frames.

by positive and negative prompts. After receiving the input,
Deforum utilizes the image-to-image function of SD models
to generate a series of image frames that match the input
description through iterative and optimization processes. Dur-
ing the generation of each frame, Deforum uses information
from previous frames and subtle changes to predict the content
of the next frame, which may involve variations in object
positions and adjustments to shapes, etc. By continuously
generating these slight changes in frames, Deforum can create
smooth animation effects.

From the perspective of video generation, 2D images are
inputted to produce a continuous sequence of images, enabling
the creation of 3D digital core samples. Using sandstone CT
images as the initial input, the Realistic Vision model is
employed to generate a 90-frame video, mimicking 90 layers
in 3D space (Fig. 8).

It is observed that within the first 20 frames of variation,
the images generated by Deforum are relatively reasonable.
However, beyond 20 frames, the differences between the gen-
erated images and the original ones significantly increase, and
the generated shapes often become illogical. This phenomenon
is related to the limitations of using existing pre-trained
models in the digital rock domain. Most of the SD models
are typically trained on large-scale, diverse, and everyday
image datasets, which may not include or adequately represent
the specificity of rock images. Therefore, when attempting
to generate content related to digital core, they may fail to
accurately capture these subtle but critical features, resulting
in significant deviations between the generated images and the
expected results. Furthermore, prompts play a crucial role in
guiding the models to generate images. However, due to the
inherent differences between SD models’ training set and rock
images, the models may struggle to understand or accurately
interpret professional terms and descriptions related to digital
rock, further exacerbating the mismatch between the generated
results and the expectations. Therefore, to address these issues,
it is critical to retrain the SD models for rock images. By
leveraging specific datasets to train the models, they are able
to acquire a profound understanding of the distinctive features
and patterns inherent in rock images, thereby enhancing the
precision of the generated outcomes.

In summary, despite the limitations of SD in this area,
it is anticipated that retraining the models and optimizing the
design of prompts will facilitate the overcoming of these chal-
lenges and enhance the quality of the generated images. This
will offer enhanced support for the 2D to 3D reconstruction
of digital rock.

3.5 Text to image
Text to image is an important application direction of

Stable diffusion. In the text to image task, the diffusion models
initially take a descriptive text as input and encode it into a
fixed-length vector using a pre-trained text encoder to capture
the main information. Then, the text vector is combined with
random noise to generate conditional embeddings. These em-
beddings serve as guidance to generate images that match the
input text description (Rombach et al., 2022). Throughout the
iteration process, diffusion models gradually decode from the
conditional embeddings to eventually generate the expected
images.

Consideration is given to applying text to image in the field
of digital rock, aiming to rapidly generate rock images that
meet specified requirements by leveraging given instructions
or descriptions. SEM-XRD images containing 12 minerals are
annotated. The text includes the proportion of each mineral
in the entire image (for example, X takes up 0.00178000 of
the entire picture, where X represents the mineral identifier).
Afterwards, LoRA is retrained with 2,000 sets of images and
labels, with some important parameters listed in Table 5.

The SD model is fine-tuned using LoRA. Subsequently,
five SEM-XRD images (not included in the training set) are
randomly selected, and their mineral proportions are used as
prompts to generate images in SD. The text content includes
both positive and negative prompts. Positive prompts are
used to guide the depiction of specific minerals and their
proportions in the image, such as “A takes up 0 of the entire
picture, B takes up 0.00072800 of the entire picture”, and so
on, until “L takes up 0 of the entire picture”. In addition, to
avoid generating low-quality or unexpected images, a series
of negative prompts are used, including “poorly drawn”, “low
resolution”, “low quality”, and “worst quality”.

Considering the stochastic nature of text to image conver-
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Fig. 9. Generated images based on given prompts.
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Fig. 10. Proportion of minerals in color for the original and generated images.

Table 5. Parameters of LoRA network for text to image.

Parameters Value

Image size 320×320

Data amount 2,000

Max epochs 20

Batch size 1

Unet learning rate 1.00×10−4

Text encoder learning rate 1.00×10−5

Prior loss weight 1

Shuffle caption True

Keep tokens 0

Optimizer type AdamW8bit

Network dim 32

Network alpha 32

Xformers True

sion, for each set of prompts, 8 images are generated, and
their color proportions are calculated, followed by taking the

mean. Some generated results are presented (Fig. 9), and the
color proportions of the original and the generated images are
displayed in Fig. 10.

The results show that when the proportion of the most
dominant color (Albite, which has a mineral number of C) is
set as prompts within the range of 0.5-0.6, a high consistency
in color proportions with the original images is exhibited by
the generated images. However, when adjusting the prompts
to around 0.4 or 0.7, differences in color proportions between
the generated and original images emerge. This phenomenon
may be closely related to the distribution of such colors in the
training dataset. Consistency in color proportions between the
generated and original images can only be ensured when the
color proportion distribution in the testing dataset is adequately
covered by the training dataset.

3.6 Data augumentation
In the field of digital rock, diffusion models can serve

as a powerful data augmentation technique to improve the
generalization capability of deep learning models. By simu-
lating the process of adding and eliminating random noise,
they can be used to generate new images that are similar
to the original dataset. Ma et al. (2023a) utilized diffusion
models to generate a large CT/SEM and binary segmentation
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dataset from a small initial dataset. They further test the
threshold segmentation performance of U-Net, Attention-U-
net, and TransUNet on augmented images, and find that the
dataset generated by diffusion models significantly improved
the performance, especially in handling images with complex
pore morphology. This approach not only expands the training
dataset, increasing the diversity and complexity of the data, but
also enhances the segmentation accuracy and robustness of the
models.

4. Future opportunities in application

4.1 Image completion
When constructing digital rock models, issues such as

sample preparation quality and scanning device limitations
may lead to missing images. Image completion addresses
this by filling missing regions within the image. Repaint,
an image completion algorithm based on DDPM, employs a
pre-trained unconditional DDPM as a generative prior, which
has learned to generate clear images from noise. During
the restoration process, it integrates known information into
the reverse DDPM process, gradually filling in missing con-
tent while maintaining existing areas’ integrity (Lugmayr et
al., 2022). Compared to other traditional image restoration
methods, Repaint doesn’t rely on specific mask types or
training data distributions, showing superior generalization. It
can also generate meaningful content, not just simple texture
extrapolations, thanks to DDPM. Nevertheless, the application
of image completion algorithm in the restoration of rock
images deserves further attention.

4.2 Lithologic discrimination
Lithologic discrimination is a core task in geological

research, which involves in-depth analysis and interpretation of
physical properties, chemical composition, and microstructure
of rocks. In recent years, deep learning algorithms have
gained prominence in this field. For instance, CNN-based al-
gorithms efficiently classify rocks by automatically extracting
features like texture and color from images (Imamverdiyev
and Sukhostat, 2019). In this context, diffusion models bring
new possibilities to lithologic discrimination. The diffusion
process captures rich contextual information in images and
generate more discriminative feature representations, which
may help to identify different types of rocks more accurately.
Moreover, it exhibits good robustness in handling adversarial
attacks, meaning it can better cope with noise and interference
in images, thus maintaining accurate identification of complex
images. Thus, training the diffusion models holds promise
for achieving high-precision identification of complex rock
images.

4.3 Fine-tuning and retraining
In this paper, training with LoRA to fine-tune tasks for

SD is conducted, while further retraining diffusion models for
digital rock also deserves attention. In the training process,
possessing a comprehensive digital rock database is crucial.
This database should contain a sufficient number of samples

and diverse data variations so that the models can learn
enough features and patterns. Hence, building and maintaining
a high-quality digital rock database is essential for driving the
integration of diffusion models with digital rock analysis.

4.4 Similar ideas from medical image analysis
Diffusion models, like those used in digital rock analysis,

find application in medicine where high-precision CT scans aid
in anatomical observation and parameter analysis. They have
demonstrated effectiveness in medical image generation and
processing. Similar to digital rock images, the human body
also has complex structures. By training diffusion models,
intricate human tissues, such as bone microstructures, can
be effectively identified, enabling high-precision classification
and recognition of complex CT images. Moreover, the avail-
ability of high-quality medical image databases facilitates the
application of diffusion models in medical imaging. Kazerouni
et al. (2023) provide an extensive overview of diffusion models
in medical imaging, discussing various applications including
reconstruction, image translation, classification, segmentation,
denoising, and addressing medical challenges. In other fields
utilizing high-precision CT scanning technology, diffusion
models can also be used to enhance high-precision image
recognition. Further research is warranted in the medical and
related fields to explore the full potential of diffusion models
for image generation and processing.

5. Potential research directions in methodology

5.1 Samplers
SD provides diverse sampling methods that significantly

impact image quality across different tasks. While the DDPM
algorithm theoretically lays the foundation for subsequent
diffusion models, its practical implementation often lags due
to its reliance on the first-order Markov assumption, resulting
in slower denoising. In contrast, DDIM, an early sampler for
diffusion models, enhances both sampling efficiency and pro-
cess optimization by utilizing non-Markov diffusion processes.
It exhibited enhanced generation performance over DDPM,
particularly evident with smaller sampling steps, resulting in
notably accelerated generation speeds.

In addition to first-generation samplers like DDIM, SD also
supports DPM and DPM++ series samplers (Lu et al., 2022).
The DPM++ 2M SDE Karras used in this paper was released
in 2022 as a diffusion model sampler. It is currently one
of the algorithms that balance generation speed and image
quality well, and demonstrating excellent performance in the
image processing tasks of this paper. When selecting sampling
methods in practice, it is necessary to weigh various sampling
methods based on the characteristics of the specific task and
dataset, and test multiple sampling methods to find the suitable
algorithm for the current task.

5.2 Text to video
OpenAI’s video generation model, Sora, released in Febru-

ary 2024, revolutionizes AI “Text-to-Video” generation. Un-
like previous tools like Stable Video Diffusion and Runway,
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which are slow and produce short videos (3-4 seconds), Sora,
utilizing Diffusion Transformer (DiT) technology, can generate
high-definition videos up to one minute long. It not only
interprets user input but also understands real-world entity
interactions, enabling it to create detailed scenes with mul-
tiple characters and precise movements (Brooks et al., 2024).
However, there’s ongoing debate about Sora’s understanding
of physics principles. OpenAI’s technical report highlights
instances where Sora fails to accurately simulate physical
properties. François Chollet, the founder of Keras, points
out limitations in predicting the physical world by fitting
high-dimensional curves to a large number of data points
using machine learning models. While data-driven models can
effectively simulate complex dynamics of the real world under
specific conditions, such as weather prediction or wind tunnel
experiments, they struggle to generalize to new situations.

Similar to Sora, SD also shares these limitations. Data-
driven generative models often struggle to consider mecha-
nisms, and although SD performs well in some tasks, further
research is still needed when it comes to precise physical
mechanisms.

5.3 Physics-informed approach
For digital rock images, the assessment standards pre-

dominantly rely on image quality metrics such as PSNR and
SSIM, which may not be ideally suited for applications within
the petroleum engineering field. For instance, in the image
super-resolution techniques, the PSNR or SSIM is commonly
employed as loss functions to evaluate the quality and accuracy
of reconstructed images. However, such an index does not
account for the underlying physical mechanisms.

In future research, diffusion models could be trained to
“learn” the physical mechanisms between different images
and “understand” the underlying principles, by embedding
the governing equations into the loss of the neural network,
such as physics-informed neural networks. This idea could be
applied to generating rock images before and after hydraulic
fracturing. Specifically, by training the diffusion models using
images of intact rocks prior to hydraulic fracturing and images
of fractured rocks post-fracture, the model could “simulate”
the physical phenomena of hydraulic fracturing and predict
the post-fracture digital rock images.

5.4 Light-weighting models
The architecture of diffusion models shows potential for

further simplification and optimization. A recent development
introduced a highly simplified architecture termed l-DAE
through a process of deconstructing diffusion models. This
deconstruction revealed that only a few modern components
are essential for effective representation learning, while many
others are superfluous. By eliminating unnecessary compo-
nents, diffusion models can become more streamlined and
efficient. Throughout this deconstruction process, adjustments
were made to the DiT architecture to prioritize self-supervised
learning. Subsequently, the tokenizer was gradually simplified,
leading the model towards a more traditional DAE approach.
The resulting transformed model, l-DAE, has demonstrated

competitiveness in self-supervised learning tasks, surpassing
benchmarks such as MoCo v3 and ViT-B (86M parameters),
albeit still falling short compared to larger-scale models like
ViT-L (304M parameters).

5.5 Generation of network parameters
In addition to image generation, diffusion models also

have broad prospects for application in other fields. Wang et
al. (2024) combined the auto-encoder framework with standard
latent diffusion model to design a novel method called pa-
rameter diffusion, which synthesizes effective neural network
parameters from random noise by training the latent diffusion
model. Experiments showed that the method consistently gen-
erates models with comparable or higher performance than
the trained networks with minimal additional cost on a variety
of architectures and datasets. To confirm the generation of
new parameters, they conducted further verification revealing
significant differences between generated and original models.
This suggests parameter diffusion’s ability to produce new pa-
rameters distinct from its training data. The ability of diffusion
models to generate high-performance parameters suggests a
breakthrough in algorithm design and optimization, indicating
their enormous potential for application.

5.6 Combination with generative foundation
models

Combining diffusion models with generative foundation
models may explore more interesting applications in AIGC.
For example, providing textual inputs to ChatGPT to generate
accurate and reasonable prompts, which are then passed to the
diffusion models to generate images that match the descrip-
tions. Alternatively, batches of rock images can be fed into
diffusion models for feature extraction, followed by combining
the extracted features with generative foundation models to
analyze and produce detailed textual descriptions of reservoir
conditions.

6. Conclusions
In this study, the applications of SD are explored in image

super-resolution reconstruction, image extension, denoising
and restoration, random reconstruction of 3D digital rocks
based on 2D images, as well as generating rock images given
specific instructions. SD is characterized by its ease of training
and adjustment, high stability and strong scalability. Although
SD performs well in some tasks, challenges remain in areas
such as 2D to 3D reconstruction and text to image generation
due to the limited generalization ability of universal models in
the field of digital rock. Therefore, it is necessary to establish
a comprehensive and reliable rock database to support fine-
tuning or retraining. The powerful image generation capabil-
ity of diffusion models provides new ideas for digital rock
analysis, showing potential in filling missing parts of rock
images, lithologic discrimination, and even generating network
parameters, further developing algorithms. Many researchers
have been inspired by the principles of diffusion models and
are committed to continuously light-weighting and accelerat-
ing SD algorithms. The application of SD in the field of digital
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core has shown vast research prospects, and it is expected to
bring revolutionary progress to digital core analysis.
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