Permeability evaluation on oil-window shale based on hydraulic flow unit: A new approach

Pengfei Zhang1,2, Shuangfang Lu1,*, Junqian Li1,*, Jie Zhang1,2, Haitao Xue1, Chen Chen1,2

1Research Institute of Unconventional Oil & Gas and Renewable Energy, China University of Petroleum (East China), Qingdao 266580, P. R. China
2School of Geosciences, China University of Petroleum (East China), Qingdao 266580, P. R. China

Abstract: Permeability is one of the most important petrophysical properties of shale reservoirs, controlling the fluid flow from the shale matrix to artificial fracture networks, the production and ultimate recovery of shale oil/gas. Various methods have been used to measure this parameter in shales, but no method effectively estimates the permeability of all well intervals due to the complex and heterogeneous pore throat structure of shale. A hydraulic flow unit (HFU) is a correlatable and mappable zone within a reservoir, which is used to subdivide a reservoir into distinct layers based on hydraulic flow properties. From these units, correlations between permeability and porosity can be established. In this study, HFUs were identified and combined with a back propagation neural network to predict the permeability of shale reservoirs in the Dongying Depression, Bohai Bay Basin, China.

1. Introduction

Due to developments in horizontal well and hydraulic fracturing techniques, shale has received renewed attention and has emerged as a commercial hydrocarbon reservoir. Numerous artificial fracture networks are generated within shale reservoirs after hydraulic fracturing. Permeability controls the fluid flow from the shale matrix to artificial fracture networks and greatly affects the production and ultimate recovery of shale oil/gas (Li et al., 2017). The permeability of shale reservoirs is more difficult to estimate than in conventional reservoirs because shale consists of a complex and heterogeneous porous medium that is rich in organic matter and clay minerals (Jarvie et al., 2007; Yu, 2012; Sidiq et al., 2017; Zhang et al., 2017). Various techniques, such as experimental core analysis, have been proposed to measure permeability. These methods provide accurate values of permeability but do not demonstrate the reservoir heterogeneity because time and cost constraints prohibit drilling in all well intervals (Nooruddin and Hossain, 2012). However, commonly available well logs can provide continuous information along the well and offer a less-expensive method of measuring permeability. In recent years, several methods have been used to correlate core permeability with well logs, such as multivariate regression (Chen et al., 2015), artificial neural networks (Aminian and Ameri, 2005; Zhou et al., 2010; Tahmasebi and Hezarkhani, 2012), neuro-fuzzy systems (Saemi and Ahmadi, 2008; Aifa et al., 2014) and Support Vector Machines (Baziar et al., 2014). These methods have been powerful tools for predicting the permeability of sandstone (tight), and carbonate rock reservoirs. However, shale permeability prediction by these methods from well logs is difficult and complex, because shale reservoirs are dominated by nanometer-scale pores, which results in the
complex and heterogeneous pore fracture network (Nelson, 2009). Therefore, presenting a method, which can estimate the permeability of heterogeneous shales, is necessary.

A hydraulic flow unit (HFU) is a correlatable and mappable zone within a reservoir, in which fluid flow properties are uniform because of a similar pore throat structure (Hearn et al., 1984; Dou, 2000). Flow unit zonation subdivides a reservoir into layers based on hydraulic flow properties, thereby simplifying the heterogeneity. Each HFU is characterized by a flow zone indicator (FZI) and a strong correlation between permeability and porosity can be established (Amaefule et al., 1993). Moreover, porosity prediction from well logs is simpler than permeability prediction. Therefore, porosity can be used to estimate the permeability within each HFU based on a porosity-permeability transformation (Al-Ajmi and Holditch, 2000; Desouky, 2005; Jiao and Xu, 2006; Bhattacharya et al., 2008; Guo et al., 2010; Xiao et al., 2013; Orodu et al., 2016).

Multiple linear regression modeling using well log data has been the main method of estimating porosity in sandstone (tight), carbonate and volcanoclastic rock reservoirs (Zhang et al., 2012a; Zhang et al., 2016). However, petrophysical investigations suggest that the linear correlations between porosity and log data are indeterminate, particularly for tight shale reservoirs with complex mineral and fluid compositions (Lian et al., 2006). Back propagation (BP) neural networks have a flexible model structure that can be used to include non-linear, complex interactions between the model input and output. BP neural networks have been successfully employed to estimate porosity in heterogeneous petroleum reservoirs (Zhang, 2005; Ali and Ebrahim, 2016).

The objective of this paper is to predict the permeability of shale reservoirs in the Dongying Depression, Bohai Bay Basin using core and well log data from three wells (FY1, LY1 and NY1). The HFUs in the study reservoirs are based on core data, which are used to determine the FZI and the porosity-permeability transformation for each HFU. The well logs are analyzed for well FY1 and LY1, and then correlated with core date information by BP neural network to produce reliable prediction models for porosity and FZI, respectively. The permeability estimation method is constructed with data from wells FY1 and NY1, and the generalization capability is verified by NY1 core data. The shale reservoir permeability values in un-cored wells are also estimated using this method. The results of this research have many applications for the exploration and development of shale oil/gas in the Dongying Depression.

2. Geological setting

The Dongying Depression is located in the southeastern portion of Bohai Bay Basin (Fig. 1) and is one of the most petroliferous depressions in China, spanning approximately 5800 km2. It can be divided into four subsags (i.e., Boxing, Lijin, Minfeng and Niuzhuang). According to the regional history and sedimentary sequences, the evolution of the Dongying Depression can be divided into syn-rift and post-rift stages (Xie et al., 2006). Dark shales (including mudstones and shales) are the main source rocks of the upper part of the fourth member (Es^4_{U}) and of the lower part of the third member (Es^3_{L}) in the Paleogene Shahejie Formation. Es^4_{U} and Es^3_{L} formed in a saline and a humid lacustrine environment, respectively, and were deposited during the syn-
rift stage. These two members have a high TOC content, as well as type I and II immature kerogen (0.42-0.64 R_o %) and are the primary targets of shale oil/gas exploration in the study area (Zhang et al., 2012b; Zhang et al., 2014).

In this study, log information from three shale oil wells (FY1, LY1 and NY1) were used (Fig. 1). Wells FY1, LY1 and NY1 have 78, 24 and 21 data points, respectively. Modeling and validation datasets were constructed to assess the performance of the permeability estimation method. The modeling dataset consisted of 102 data points from wells FY1 and LY1, while the validation dataset included 21 data points from well NY1.

3. Methods

3.1 Hydraulic flow units

A hydraulic flow unit (HFU) is a reservoir unit in which fluid flow properties are uniform due to similar pore throat properties (Amaefule et al., 1993; Aguilera and Aguilera, 2001; Clarkson et al., 2012; Chen et al., 2016; Al-Rbeawi and Kadhim, 2017; Onuh et al., 2017). A hydraulic unit scheme was proposed to identify HFUs within a reservoir based on the modified Koseny-Carman equation and the mean hydraulic radius (Taghavi et al., 2007; Rahimpour-Bonab et al., 2012; Aguilera, 2014; Chen and Zhou, 2017). The Koseny-Carman equation expresses permeability as a function of effective porosity, shape factor, tortuosity and specific surface area. The equation is commonly expressed as follows (Carman, 1937):

$$k = \frac{1}{F_S \tau^2 S_{gr}^2} \frac{\varphi^3}{(1 - \varphi)^2}$$ \hspace{1cm} (1)

where k is permeability in μm^2, F_S is the shape factor, τ is the tortuosity, S_{gr} is the specific surface area of the grain in μm^{-1} and φ is the effective porosity (fraction).

Rearranging and taking the square root of (Eq. 1) results in the following form:

$$0.0314 \sqrt{\frac{k}{\varphi}} = \frac{1}{\sqrt{F_S \tau S_{gr}^2}} \left(1 - \varphi\right)$$ \hspace{1cm} (2)

where the left hand side of (Eq. 2) is the reservoir quality index (RQI) and the permeability (k) is expressed in units of $10^{-3} \mu m^2$. The first term on the right hand side is the flow zone indicator (FZI) and $\varphi/(1-\varphi)$ is the normalized porosity (PMR). Rearrangement of (Eq. 2) yields the following:

$$FZI = \frac{RQI}{PMR}$$ \hspace{1cm} (3)

By taking the logarithm of (Eq. 3), the following relationship is derived:

$$lg(RQI) = lg(PMR) + lg(FZI)$$ \hspace{1cm} (4)

Theoretically, plotting RQI versus PMR should yield a unit slope line on a log-log plot where reservoir samples with similar FZI values lie in similar locations along this line. Samples with different FZI values lie on adjacent parallel lines, with each having a distinct range of FZI values. Using the cumulative plot of $lg(FZI)$, the optimal number of HFUs and their associated $lg(FZI)$ intervals can be determined (Kadkhodaie-Ikhchii et al., 2013). The porosity-permeability relationship on a semi-log plot can be defined for each HFU and subsequently used to estimate permeability.

3.2 Back propagation (BP) neural network

A Back Propagation (BP) neural network is a multilayer feed-forward artificial neural network (ANN) that uses an error back propagation algorithm for training. A BP neural network is a nonlinear dynamic system that processes large-scale, parallel-distributed information with variable structure,
high nonlinearity, and self-learning and self-organization characteristics (Wu et al., 2016).

A BP neural network consists of an input layer, one or more hidden layer(s) and an output layer (Hornik et al., 1989). A single hidden layer is common as additional hidden layers rarely improve the model (Baziar et al., 2014). Given a training set of input and output data, the back propagation algorithm divides the learning process into two stages (Fig. 2). In the forward propagation stage, the external input information is processed by the hidden layer to compute the output signal. In the error back propagation stage, if the output differs from the expected value, modifications to the connection weights are made in each layer based on the difference between the computed and the expected values, defined as the error. Discerning the optimal number of neurons in the hidden layer is a challenging step in BP neural network modeling (Nabipour and Keshavarz, 2017). A lower-than-optimum number of neurons in the network will result in incorrect training. Conversely, too many neurons in the network may cause overfitting, resulting in low precision (Hamzehie et al., 2015).

4. Results and discussion

4.1 Porosity and permeability of shale core samples

Porosity and permeability are considered the two most important parameters in hydrocarbon reservoir evaluation because they reflect the storage and flow capacities of a medium (Kadkhodaie-Ikhchi et al., 2013; Li et al., 2017b). Fig. 3 shows the distributions and a cross plot of core porosity and permeability for three shale oil wells in the Dongying Depression. The porosity of shale samples varies from 2.4% to 19.5% (mean 7.83%). The majority of shale sample porosities range from 4% to 8% (Fig. 3(a)). Permeability values range from 0.024×10^{-3} μm2 to 10.4×10^{-3} μm2 with an average of 1.303×10^{-3} μm2. However, permeability values are less than 1×10^{-3} μm2 in 91 of the 123 shale samples, with the majority ranging from 0.01×10^{-3} μm2 to 0.5×10^{-3} μm2 (Fig. 3(b)). Moreover, the semi-log plot of the complete core dataset shows a poor correlation between permeability and porosity (Fig. 3(c)). Thus, the shale reservoirs within Es3L and Es4L typify low-porosity and low-permeability reservoirs.

4.2 Porosity estimation by BP neural network

Porosity is commonly determined by three types of well log data: sonic travel time (AC), bulk density (DEN) and neutron porosity (CNL). Total porosity is determined by well log data and is affected by the high clay content of shale reservoirs, while effective porosity is measured in the laboratory using well cores. Gamma ray logs (GR) can efficiently reveal clay content of the formations and can be used to control for the shale reservoir clay content. Therefore, in this study a BP neural network porosity model was established using three porosity and gamma ray logs as input vectors to output a core-based porosity scalar. To reduce the large differences parameter values, the logging data values were normalized to between 0 and 1.

The multilayer perceptron (MLP) neural network model in the SPSS Modeler 14.1 software was used to establish a BP neural network model to estimate porosity, consisting of input, hidden and output layers. The boosting model was employed to improve the BP neural network model accuracy. Termination of training was based on two criteria: minimum mean squared error and maximum training time. In this study, trial and error was used to find the appropriate network within the MLP architecture. Then, the modeling dataset was randomly divided into training and test subsets. To achieve the optimal structure, the proportion of data included from the training subset varied from 50% to 99%, while the proportion of the test subset data included varied from 50% to 1%. For each training and test
5

dataset, the optimal number of hidden layer neurons was automatically calculated by the software. The results indicate that the MLP architecture was optimal when the training and test subsets consisted of 79 and 23 data points, respectively. Moreover, a strong positive correlation \((R^2 = 0.96)\) was observed between the calculated and measured porosities (Fig. 4).

4.3 HFU identification and prediction

4.3.1 HFU identification in shale core samples

Hydraulic flow units were determined using a modified Koseny-Carman equation based on the porosity and permeability of shale core samples (Tiab and Donaldson, 2012). Breaks in slope on the cumulative frequency plot of \(l g(FZI)\) data were used to determine five HFU intervals in the shale core samples (Fig. 5(a), Table 1). The log-log plot of \(RQI\) versus \(PMR\) for the five HFUs is shown in Fig. 5(b). The \(RQI\) and \(PMR\) of each HFU lie in similar positions along a unit slope line, with the intercept representing the average \(FZI\) value for each HFU. The semi-log plot of permeability and porosity shows the correlations between these two variables for all five HFUs (Fig. 5(c)). The correlation coefficient of each HFU is significantly greater than the correlation coefficient of the whole dataset (Fig. 3), indicating that the porosity and permeability of each HFU are distinct. Furthermore, two shale samples with similar porosities may have different values of permeability. This difference is due to the presence of pore structures dominated by sedimentary and diagenetic processes within each HFU (Kadkhodaie-Ikhchi et al., 2013; Yarmohammadi et al., 2014). Therefore, porosity-permeability transformations can be used to estimate the permeability values of each HFU.

\(RQI\) is the primary factor that controls reservoir quality and reflects the pore structure properties of porous media. The relationships between porosity, permeability and \(RQI\) for the five HFUs are shown in Fig. 6. Permeability shows a stronger relationship with \(RQI\) than with porosity, indicating that permeability is a key parameter in petroleum reservoirs.

Table 1. FZI intervals used for HFU identification.

<table>
<thead>
<tr>
<th>Hydraulic flow units</th>
<th>(l g(FZI)) interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>HFU A</td>
<td>(0.4 \leq l g(FZI))</td>
</tr>
<tr>
<td>HFU B</td>
<td>(0.14 \leq l g(FZI) < 0.4)</td>
</tr>
<tr>
<td>HFU C</td>
<td>(0.1 \leq l g(FZI) < 0.14)</td>
</tr>
<tr>
<td>HFU D</td>
<td>(-0.4 \leq l g(FZI) < -0.1)</td>
</tr>
<tr>
<td>HFU E</td>
<td>(l g(FZI) < -0.4)</td>
</tr>
</tbody>
</table>

Fig. 4. Comparison of the calculated and measured porosities.

Fig. 5. Identification of the five HFUs and associated data, (a) cumulative frequency plot of \(l g(FZI)\) data, (b) \(RQI-PMR\) and (c) porosity-permeability.

...
greatly affecting fluid seepage and production (Tahmasebi and Hezarkhani, 2012; Cao et al., 2016; Cronin et al., 2016).

4.3.2 FZI estimation and HFU prediction

The characterization of HFUs is based on the FZI values calculated using porosity and permeability measurements of cored well rock samples. Normally, FZI values from core samples are matched with corresponding well log data using various correlations, facilitating continuous HFU identification in both cored and un-cored wells. In this study, the correlations between FZI values and well log data were modeled by a BP neural network. Compared to correlations with porosity, the correlations between FZI values and well log data are difficult and complex. Therefore, a large number of well log data were selected using correlations with FZI values, including caliper (CAL), spontaneous potential (SP), gamma ray (GR), neutron porosity (CNL), 4 m lateral resistivity (R4) and micro lateral resistivity (RLML) measurements. The FZI BP neural network model was obtained by the same method used to generate the porosity model. The results demonstrated a strong positive correlation ($R^2=0.84$) between calculated and measured FZI values when the training and test subsets consisted of 79 and 23 data points, respectively (Fig. 7). Thus, FZI values estimated by this model can be used to identify HFUs in un-cored wells continuously (Table 1, Fig. 8 and 9).

4.3.3 Permeability estimation

Porosity-permeability transformations were obtained using the identified HFUs to estimate permeability. The exponential regression model has become popular for establishing porosity-permeability transformations and is advantageous because it uses a straight-line on a semi-log plot to discern the transformation. However, limited numbers of available datasets may result in high estimated permeability values for low porosity samples, and in particular, zero porosity cannot result in zero permeability (Jiao and Xu, 2006). Therefore, in this study, power function regression models were employed to determine the relationships between porosity and permeability (Jennings and Lucia, 2001), yielding high correlation coefficients (Fig. 5(c)). Using the permeability as the dependent variable in the power function model produced the following relationships in the study reservoirs (Fig. 5(c)):

- HFU A: $k = 0.013\phi^{3.1861}$, $R^2 = 0.9085$
- HFU B: $k = 0.0043\phi^{2.9254}$, $R^2 = 0.9259$
- HFU C: $k = 0.0018\phi^{2.7389}$, $R^2 = 0.8653$
- HFU D: $k = 0.0005\phi^{2.9263}$, $R^2 = 0.9080$
- HFU E: $k = 4 \times 10^{-5}\phi^{2.9263}$, $R^2 = 0.7482$

Using the five HFUs and their associated porosity-permeability transformations, continuous permeability values in wells FY1 and LY1 were predicted using the porosities estimated by the BP neural network model. Estimated permeability values correspond well to measured values, indicating that the model can accurately predict the permeability of shale reservoirs (Fig. 8 and 9).

4.4 Model validation and permeability estimation in un-cored wells

Models trained with the datasets from wells FY1 and LY1 were tested with data from well NY1 to assess their ability to estimate permeability in un-cored wells. Fig. 10 shows the predicted FZI, porosity and permeability values from well NY1 and reveals that the curves of these estimated parameters are similar to core-based value relationships. Therefore, the
Fig. 8. HFU identification and estimated porosity and permeability values for wells FY1.
Fig. 9. HFU identification and estimated porosity and permeability values for wells LY1.
<table>
<thead>
<tr>
<th>Formation</th>
<th>SP/mV</th>
<th>R4/Ω·m</th>
<th>R25/Ω·m</th>
<th>AC/μs.m⁻¹</th>
<th>DBN/g.cm⁻³</th>
<th>CNL/%</th>
<th>CAL/inch</th>
<th>RLML/μm</th>
<th>Lithology</th>
<th>Measured FZI μm</th>
<th>Calculated FZI μm</th>
<th>Measured porosity %</th>
<th>Calculated porosity %</th>
<th>Measured permeability 10⁻¹μm⁻²</th>
<th>Calculated permeability 10⁻¹μm⁻²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Es3</td>
<td>20-90</td>
<td>0.1-100</td>
<td>0.1-100</td>
<td>150-50</td>
<td>2.1-2.8</td>
<td>8-11</td>
<td>0.1-100</td>
<td>50-5</td>
<td>Depth (m)</td>
<td>0-6</td>
<td>0-6</td>
<td>0-20</td>
<td>0-20</td>
<td>0.01-1000</td>
<td>0.01-1000</td>
</tr>
<tr>
<td>Es4</td>
<td>30-150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 10. HFU identification and estimated porosity and permeability values for well NY1.
The interval between the red and blue dotted lines represents the Es3* member.
The interval between the red and blue dotted lines represents the Es4* member.

Fig. 11. Contrast plane in the calculate model.
models established using the training datasets can predict the permeability in un-cored wells. In this study, shale reservoir permeability was estimated in 24 un-cored wells within the Dongying Depression. Fig. 11 shows estimated permeability values for 7 wells. Furthermore, the predicted permeability curves effectively revealed favorable shale oil/gas seepage layers.

5. Conclusions

Using core porosity and permeability data along with statistical techniques, five hydraulic flow units were defined in shale reservoirs located within the Dongying Depression. In addition, porosity-permeability transformations with high correlations were established for each HFU.

Back Propagation neural network models were trained using the modeling datasets from wells FY1 and LY1 to predict porosity and FZI. By combining each HFU with a porosity-permeability transformation, a permeability estimation method was established to obtain continuous permeability in shale reservoirs. Estimated values of permeability correspond well to measured permeability values in wells FY1 and LY1.

The permeability estimation method, trained with data from wells FY1 and LY1, was tested with a core dataset from well NY1 to assess the method’s ability to estimate permeability in un-cored wells. The results showed that the method can generate predicted permeability curves in un-cored wells, which effectively reveal favorable shale oil/gas seepage layers.

Acknowledgments

This study was supported by the Key Program of the National Nature Science Foundation (41330313), the National Natural Science Foundation (41602131, 41572122, 41672130), and the Fundamental Research Funds for the Central Universities (17CX06036, 17CX02074, YC2017002).

Open Access This article is distributed under the terms and conditions of the Creative Commons Attribution (CC BY-NC-ND) license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

References

