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Abstract:
Carbon capture and storage is vital for reducing greenhouse gas emissions and mitigating
climate change. Most projects involve the permanent geological storage of CO2 within deep
sedimentary rock formations, but accurately constraining storage capacity usually involves
detailed and computationally demanding reservoir modeling and simulation. Efficiency
factors can also be used but these often lead to capacity overestimations. To address
this, a workflow is proposed harnessing various existing, reduced complexity models
that account for the surface topography and dynamic fluid behavior in a computationally
efficient manner. This workflow was tested in an area of the Malay Basin mapped from
three-dimensional seismic data but with illustrative reservoir parameters. A static analysis
was first undertaken using algorithms within MRST-co2lab. Structural traps, spill paths
and spill regions were identified using the reservoir topography. This provided initial
indications into optimal well placement and led to refinement of the total capacity of the
area into the capacity available within structural traps. This was followed with a dynamic
analysis, also within MRST-co2lab, using computationally efficient Vertical Equilibrium
models. Hundreds of simulations were undertaken and the optimal well placement was
determined based on the maximum storage efficiency achieved. The results indicated
that the amount that can be contained within this area is 15 times less than equivalent
predictions using static storage efficiency factors. The advantage of such a light approach
is that sensitivity and uncertainty analysis can be carried out at speed, before targeting
certain parameters/areas for more detailed study.

1. Introduction
The permanent storage of CO2 within deep geological

formations is critical for achieving significant reductions in
greenhouse gas emissions and mitigating climate change
(IPCC, 2023). However, evaluating the capacity of a geological
storage site is a complex task, involving various approaches
and definitions. During the initial stages of a project, capacity
estimates often overlook the dynamic behavior of a reservoir,
favoring a volumetric approach that considers only the static
pore volume available for storage (Bachu et al., 2007). This
approach may lead to overestimations of capacity if factors

such as pressure evolution and compressibility are neglected
(Thibeau and Mucha, 2011).

Efficiency factors play a crucial role in constraining stor-
age capacity during screening processes. They are used to
parameterize dynamic reservoir effects and represent the pro-
portion of the reservoir’s pore space that can be accessed by
CO2, considering geology (permeability, connectivity, etc.) and
other subsurface and operational criteria including pressure,
injection strategy, and regulatory constraints (Nordbotten and
Celia, 2011; Bachu, 2015; Mathias et al., 2015). They are
widely utilized in national and international CO2 storage
screening programs including those in the UK, USA, and Eur-
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Fig. 1. (a) Map of offshore Peninsular Malaysia showing
the outlines of major sedimentary basins, hydrocarbon fields,
wells, and the locations of (c) and cross-section A-A’, (b) inset
map showing (a)’s position in relation to the wider Southeast
Asia region and (c) top reservoir surface map in the J Area.
A-A’: Seismic cross-section showing the main stratigraphic
units (after de Jonge-Anderson et al. (2024)). Ca: Cambodia,
In: Indonesia, PM: Peninsular Malaysia, Th: Thailand, TWT:
two-way-time, Vi: Vietnam.

ope (Vangkilde-Pedersen et al., 2009; Goodman et al., 2011;
Bentham et al., 2014). However, the selection of appropriate
efficiency factors is often done based on analogue reservoirs,
introducing a degree of ambiguity in their application.

Full physics reservoir simulators, traditionally used to
quantify fluid flow and pressure response within a reservoir,
require extensive knowledge of the subsurface, which is often
challenging and costly to obtain, particularly at the early stages
of a project. There has been much research effort to expedite
this process such as using analytical equations for fluid flow
(Nordbotten et al., 2005; Okwen et al., 2010) or sketch-based
reservoir models (Jackson et al., 2022). As a compromise
between full physics simulations and analytical expressions,
Vertical Equilibrium (VE) models have emerged as effective
tools for representing CO2 plume behavior (Gasda et al., 2009;
Nilsen et al., 2011, 2016; Nordbotten and Celia, 2011; Lie
et al., 2016). By simplifying the governing equations into
a lower-dimensional system, VE models significantly reduce
computational complexity while still providing valuable in-
sights into storage behavior.

In this study, we report on an improved workflow for
estimating CO2 storage efficiency by incorporating published
static and dynamic reduced complexity models. This approach
yields more realistic capacity estimates when compared to
traditional static equation-based estimates. To illustrate this
approach, we apply our workflow to a small area of the Malay
Basin, offshore Peninsular Malaysia (“J Area”) (Fig. 1). The

Fig. 2. The top surface grid used for trap analysis and
simulations.

Malay Basin is a mature hydrocarbon province that has
substantial CO2 storage potential. The storage capacity within
saline aquifers alone is estimated at 84-114 Gt (Hasbollah
et al., 2020), while depleted fields could offer a further 3.8
Gt of storage (APEC, 2005). However, despite the wealth of
data from decades of exploration and production, there is still
substantial uncertainty about how a CO2 plume and its asso-
ciated pressure buildup will interact with geological structures
(anticlines and faults), heterogeneous reservoir distributions,
and variable seal efficacies. This will ultimately lead to errors
in calculating storage capacity, particularly in saline aquifers
with less subsurface data available.

We aim to estimate the effective storage capacity of the J
Area with limited subsurface data, but without relying on static
and generalized efficiency factors. We focus on assessing the
impacts of reservoir topography and injection well location on
plume behavior and storage containment, utilizing a physics-
informed yet computationally efficient workflow within the
MRST-co2lab framework (Andersen et al., 2016; Lie, 2019).
By adopting this approach, we aim to provide insights that
could inform CO2 storage assessments in other basins with
limited data availability.

2. Data and methodology

2.1 Structural grid
We first interpreted a time-domain three-dimensional (3D)

seismic dataset and created a surface corresponding to the top
of the candidate reservoir (Fig. 2). A high-amplitude seismic
reflector was auto-tracked and gridded at a 200 m by 200 m (X
and Y) resolution. The surface was then depth-converted using
a single-layer velocity model constrained by checkshot data
(de Jonge-Anderson et al., 2024). For our analysis, a simple
3D grid was constructed by duplicating this surface, shifting
the duplicated surface 1,000 m deeper, and then creating
five equally spaced layers between, resulting in a grid with
dimensions of 200 m × 200 m × 200 m (Table 1).
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Table 1. Model information.

Type Property Value

Grid

Number of cells (NX × NY × NZ) 100×110×5

Cell dimensions (DX × DY) (m) 200×200

Area (km2) 440 (22×20)

Average top reservoir depth (m) 1,984.00

Seafloor temperature (◦C)a 24.00

Temperature gradient (◦C/km)a 50.00

Water depth (m) 70.00

Rock

Porosity 0.05-0.25 (arithmetic mean = 0.15)

Permeability (mD) 1.20-241.00 (arithmetic mean = 39.40)

Rock compressibility (Pa−1) 4.35×10−10

Fluid (at 2,000 m depth)

Brine viscosity (Pa.s)b 3.13×10−4

Brine density (kg/m3)b 1,001.00

Brine salinity (ppm) 70,000

Brine compressibility (Pa−1) 0

CO2 viscosity (Pa.s)c 3.21×10−5

CO2 density (kg/m3)d 389.70

CO2 compressibility (Pa−1) 5.78×10−8

Rock-fluid

Residual gas (CO2) saturation 0.20

Irreducible water saturation 0.27

Relative permeability model
(
sg − sgr

)2
/
(
1− sgr

)2

Notes: aData from Madon and Jong (2021); bData from Batzle and Wang (1992); cData from Fenghour et al. (1998);
dData from Span and Wagner (2003). sg: Gas saturation, sgr: Residual gas saturation.

2.2 Structural trapping analysis
The identification of traps was conducted using MRST-

co2lab, employing an edge-based approach that treats the top
surface of the grid as a network of nodes (grid corners)
and edges (connections between nodes) with flow occurring
along the edges (Nilsen et al., 2015, see trapAnalysis.m in the
MRST 2023b co2lab module). This method returns a trapping
framework that identifies cells belonging to either a structural
trap, spill path or spill region (Nilsen et al., 2015; Lie et
al., 2016). Structural traps correspond to local maxima in
the top surface (a structural high). Traps are connected by
spill paths that connect each node to its upslope neighbor,
ultimately leading to a local maximum or the edge of the
model. Each structural trap is surrounded by a spill region;
essentially a catchment area that feeds the given trap.

2.3 Vertical equilibrium model
VE modeling is a well-established approach to simulating

the injection and storage of CO2 (Nordbotten and Celia, 2006;
Gasda et al., 2009; Nordbotten et al., 2009; Juanes et al., 2010;

Nilsen et al., 2011; Nordbotten and Celia, 2011; Lie et
al., 2016). The governing equations are outlined in many
of these studies and are not repeated herein; however, we
shall briefly describe the theorical background for complete-
ness. The theory is anchored in the assumption of vertical
equilibrium: In a two-phase system, if one phase (CO2) is
significantly lighter than the other (brine), a strong buoyant
drive on the light phase leads to vertical segregation on a
timescale much faster than that required for lateral migration.
Under these conditions, CO2 forms a thin layer immediately
beneath the caprock, and the vertical distribution of the plume
can be approximated by buoyancy and capillary forces. Hence,
plume height can be expressed as an analytical function and
plume migration simulated as a 2D rather than a 3D problem.
The strength of the VE modeling approach lies in its com-
putational efficiency, with simulations typically running much
faster than traditional 3D reservoir simulations. It has also been
extensively validated, for example against 3D reservoir simu-
lations (Nilsen et al., 2011) and benchmark models (Nilsen et
al., 2017). We implemented a VE model within the black-oil
type framework typically used within the petroleum industry
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Fig. 3. Porosity (left) and permeability (right) distributions for the top reservoir surface. The porosity distribution was created
by a Gaussian field with limits of between 0.05 and 0.25 and a standard deviation of 0.02. The permeability distribution was
estimated from porosity using the Carman-Kozeny empirical relationship (Carman, 1937).

(Nilsen et al., 2016, see CO2VEBlackOilTypeModel.m in the
MRST 2023b co2lab module).

2.3.1 Petrophysical and fluid model

The gross reservoir interval comprises a heterogeneous
and thick sequence of lower to middle Miocene sandstones,
mudstones, and coals. During the early to middle Miocene,
The J Area was situated in a coastal plain-to-shoreface setting,
close to sea level, with sandstone beds representing offshore
sand bars, fluvial channels, or estuarine channels. Although no
core or cuttings data were available for this area, published
regional data suggest that sandstone reservoirs in the basin
typically have porosities ranging between 0.1 and 0.2 (Kuttan
et al., 1980).

For the petrophysical model, porosity values were assigned
to each grid cell using a Gaussian field with bounds of 0.05 and
0.25 with a standard deviation of 0.02 (Fig. 3). Permeability
values were estimated from porosity using the Carman-Kozeny
empirical relationship (Carman, 1937). Since there was no
specific information available to determine irreducible water
saturation, it was fixed at 0.27, falling within the typical range
of 0.2-0.4 for water-wet sandstones (Baker et al., 2015).

For the fluid model, we assumed a hydrostatic pressure
gradient of 10 MPa/km and a temperature gradient of 50
◦C/km (Madon and Jong, 2021). Reference density, viscosity
and compressibility values for CO2 and brine were calculated
using appropriate equations of state (Table 1) and fine-scale
capillary behavior was included using a P-scaled table, which
approximates a capillary fringe based on upscaled capillary
pressure (Nilsen et al., 2016).

2.3.2 Simulation schedule

A schedule consisting of 128 timesteps was created start-
ing with 30, 1-year timesteps corresponding to the injection
period, followed by 95, 10-year timesteps corresponding to the

post-injection period (1,000 years in total). Hydrostatic condi-
tions were assigned to the boundary cells of the grid, allowing
brine and CO2 to flow out of the grid where necessary. For the
purposes of this study, the edges of the grid were considered
as pseudo-storage license boundaries, making lateral migration
of CO2 outside of the grid undesirable. During the injection
period, a single well was used to inject 1 Mt of CO2 per year
into the grid.

2.3.3 Maximizing storage efficiency

The computational efficiency of VE models enabled us to
rapidly conduct multiple simulations and test various uncer-
tainties. For this study, we conducted a systematic analysis
to determine the optimal location for an injection well in the
area assuming the best location is where the highest storage
efficiency is achieved. We first calculated the CO2 volume
vCO2 remaining within the grid at the end of the migration
period and divided this by the total pore volume of the grid
vP. The storage efficiency ε was then defined as:

ε =
vCO2

vP
×100 (1)

A simulation was performed with an injection well at every
25th grid cell, resulting in 440 simulations across the 11,000-
cell top surface grid. Each iteration ran in around 45 seconds
on an Intel Xeon Gold 6240R 2.4 GHz CPU. Our objective was
to determine which of these 440 injection locations minimized
leakage away from the model boundary and, in doing so,
maximized the amount of CO2 being stored within the area,
and the storage efficiency ε .

3. Results

3.1 Spill point analysis
The total rock volume in our model was determined to be

440,000 Mm3. However, only a subset of this volume consists
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Fig. 4. (a) Map of structural traps, spill paths, and spill regions identified using the “Trap Analysis” function in MRST-co2lab
and (b) cross-section through the top surface grid highlighting two structural closures separated by a strongly tilted region.
The location of the line is shown in (a).

Fig. 5. Map of trapping framework (as per Fig. 4) with
three contrasting trapping chains and their associated trapping
volumes.

Fig. 6. Map of the top structure grid colored by reachable
volume, i.e., the volume of the grid cells within structural
closures that are up-dip from that cell.

of structures suitable for the structural trapping of CO2. These
structural traps play a vital role in short-term trapping CO2
trapping before other trapping mechanisms, such as residual,
solubility, and mineral trapping, occur. A static trapping frame-
work for the J Area was developed (Fig. 4), and from this,
we calculated the rock volume within structural traps (along
the top structure grid, only) as 202 Mm3. The area dips to
the southwest with an anticline in the center (Figs. 2 and 4).

The anticline, at 195 Mm3, accounts for 97% of the entire
structural trapping volume of the area. The remaining 3% is
spread mainly across four smaller traps of between 0.8 and 3.3
Mm3, with the rest held within traps down to almost negligible
volumes (< 0.01 Mm3).

3.2 Trapping chains
An initial understanding of the ideal well placement was

first gained from analyzing the trapping chains within the
system. Trapping chains are essentially a series of traps that
could be accessed within a “fill and spill” injection scenario.
In this scenario, we assume infinite CO2 injection allowing
any trap along a migration pathway to be fully filled before
CO2 spills and moves into the next trap (or outside of the
grid). In doing this, no injection simulations are performed
but a concept emerges as to how to access the maximum
trapping structure within a static analysis framework (Nilsen
et al., 2015).

Fig. 5 illustrates three well placements with contrasting
trapping chains. In the first example (highlighted in red at the
center of the grid), a well is placed within a small trap down-
dip of the anticline. If this trap were filled to spill, CO2 would
migrate into and fill the anticline before leaving the model to
the north. This results in most of the trapping volume of the
grid being accessed (197 Mm3). By contrast, placing injection
wells in either the downdip west (green) or updip east (blue)
areas, results in CO2 migration into only small structures (4.5
and 0.8 Mm3, respectively).

This concept is conceptualized as a “reachable volume”:
The total trapping volume that can be accessed from a given
grid cell. Fig. 6 illustrates the grid with coloring corresponding
to the reachable volume of that cell. Here, the anticline and
the region downdip and to the southwest of it is the optimal
well location considering purely the volume of traps accessed.

3.3 Vertical equilibrium modeling
The analysis undertaken so far provides valuable insights

into the optimal placement of an injection well in the area,
primarily based on a static analysis of the geometry of the top
surface. However, the impact of the reservoir’s petrophysical
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Fig. 7. Output maps from the VE modeling showing (a) the top structure of the reservoir, (b) stored CO2 volume, (c) storage
efficiency and (d) the final saturation distribution of CO2 for the optimal well location.

Table 2. Summary of CO2 capacities determined at each
stage of our analysis.

Calculation type Capacity description Capacity (Mm3)

Entire grid
Total rock volume 440,000

Total pore volume 63,794

Structural trapping
(along top surface*)

Total pore volume
within structural
traps

29

VE model
Trapped CO2
volume (max)

101.27

Trapped CO2
volume (min)

0.77

Notes: *Structural trapping is only calculated for the top
surface of the grid, so it is significantly smaller than other
volume metrics.

properties on the flow behavior and migration of CO2 has not
yet been considered. To address this, we utilized a VE model to
simulate injection, as outlined in Section 2.3. This necessitated

static petrophysical models of porosity and permeability (Fig.
3). Accounting for these models, the area’s total pore volume
is 63,794 Mm3, capable of storing approximately 25 Gt of
CO2, assuming the CO2 density listed in Table 1.

The total trapped CO2 volume and storage efficiency were
mapped from the results of all the simulations (Figs. 7(b) and
7(c)). The amount of CO2 stored within the model at the end
of the simulation period was variable, ranging from 0.77 to
101.27 Mm3 (Table 2). The corresponding storage efficiencies
ranged from 0.0017% to 0.22% (Fig. 7(c)).

The lowest storage efficiencies and trapped CO2 volumes
were observed near the model boundaries where most injected
CO2 exited the model domain (Fig. 7(c)). Conversely, the
highest storage efficiencies and trapped CO2 volumes were
observed when the well was positioned in the lower-left side
of the model (Fig. 7(c)). In these cases, a significant area of
up-dip, unconfined reservoir was available for CO2 migration,
alongside an anticline that eventually formed a trap for the
migrating CO2 plume (Fig. 7(d)). Notably, injection directly
into this anticline itself resulted in lower storage efficiencies
and stored volumes, as the anticline was quickly filled-to-spill
and the CO2 then migrated northwards and out of the model
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Fig. 8. Final CO2 saturation distribution maps for (a) the simulation case with an optimized injection rate of 1.3 Mt/year and
(b) the simulation case presented in this study with a fixed injection rate of 1 Mt/year.

domain.
From this analysis, we can conclude that the optimal well

location was at the coordinate pair (410,100 m, 721,700 m)
(Fig. 7(d)), with a storage efficiency of 0.22% and a capacity
of 101.27 Mm3 (Table 2).

4. Discussion

4.1 Comparison with static efficiency coefficients
During the site-screening stage, CO2 storage efficiency

is often estimated using coefficients or analytical solutions.
Previous studies have proposed storage coefficients or classi-
fications of storage efficiency based on numerical simulations
or laboratory work, that can then be extrapolated to other
aquifers based on shared characteristics (often the depositional
environment, lithology, or petrophysical behavior) (Gorecki et
al., 2009; Blondes et al., 2013; Brennan, 2014).

Analytical solutions, while offering rapid assessments,
often make assumptions of reservoir homogeneity and/or a
closed aquifer system (Zhou et al., 2008; Okwen et al., 2010;
Szulczewski et al., 2012). Storage efficiency is ultimately a
dynamic property that evolves with injection time (Okwen et
al., 2014; Szulczewski et al., 2014). Bachu (2015) suggested
that volumetric approaches to storage efficiency were adequate
at the screening level, but these should be replaced at the
local level by numerical simulations incorporating various
operational and regulatory constraints.

In recent years, there has been significant research into
developing fast tools for CO2 storage screening utilizing VE
modeling (Lie et al., 2016), sketch-based modeling (Jackson
et al., 2022; Petrovskyy et al., 2023) or reduced-order models
(Jin and Durlofsky, 2018). These approaches aim to overcome
the limitations of traditional screening methods by providing
more accurate estimates of storage capacity and efficiency,
with limited data and/or resources.

In this work, we utilized VE models to enable numerical
modeling at the screening stage, allowing for quick simu-
lations of uncertain parameters and estimation of dynamic

plume behavior, which is lacking in volumetric approaches
to capacity/efficiency estimation. Using a conservative storage
efficiency factor of 2.4% (Goodman et al., 2011) and the
area properties mentioned in Table 1, the static capacity of
the J Area is calculated to be 1,531.06 Mm3. However, the
results from VE modeling indicate that the amount that can
be contained within the area is 15 times less, at 101.27 Mm3

(Table 2). This result clearly shows the importance of dynamic
effects and their constraint on storage capacity. Accounting
for these effects is essential to avoid overestimating storage
capacity, especially at the site screening phase.

4.2 Comparison with rate-controlled
optimization

Our approach was compared with a previously published
optimization method within MRST-co2lab which finds the
optimum CO2 injection rate using an objective function to
maximize the injected CO2 volume while minimizing mi-
gration beyond the model boundaries (Lie et al., 2016; see
optimizeFormation.m function in the MRST 2023b co2lab
module). In this optimization framework, any leaked CO2
(defined as the difference between the injected CO2 volume
and the CO2 volume retained within the grid) is subjected to
“leak penalty” constant. Following the methodology outlined
by Lie et al. (2016), we set this constant to 10. All rock, fluid
and simulation parameters were kept the same as described in
Section 2. While this optimization workflow picks an injection
well location where the largest structural trapping can be
achieved, we chose to override this and fix the well location
at the coordinates described in Section 3.3 for a more direct
comparison with our work.

After implementing this optimization procedure, the ad-
justed injection rate was determined to be 1.3 Mt/year. This
suggests that our initial injection rates (1 Mt/year) could be
slightly increased without resulting in significant amounts of
CO2 leaving the model domain. The corresponding saturation
map closely resembles that resulting from the 1 Mt/year
scenario (Fig. 8). However, the higher injection rate leads to
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133 Mm3 of CO2 being stored, and a storage efficiency of
0.29%, a slight improvement on the 0.22% value obtained pre-
viously. This outcome also instils confidence in our approach,
indicating that while we assessed storage efficiency based on
CO2 stored within the grid, we were not over-injecting and
allowing substantial amounts of CO2 to migrate outside of the
area.

4.3 Limitations and further work
4.3.1 Inherent limitation to VE modeling

While VE modeling is a powerful and flexible tool for
simulating CO2 storage in aquifers, it is important to recognize
certain inherent limitations within the model. It is assumed
that CO2 and brine segregate instantaneously in the vertical
direction, but this only holds if the vertical permeability is
greater than around 100 mD for injection rates and aquifer
thicknesses representative for CO2 storage sites (Court et
al., 2012). Additionally, the vertical averaging of reservoir
properties presents a challenge within layered reservoirs as
small-scale baffles to vertical flow may not be adequately
represented in subsequent modeling efforts. Recent studies
have sought to adapt and develop VE models by coupling them
with full dimensional simulations where necessary (Møyner
and Nilsen, 2019; Becker et al., 2022). Furthermore, while
some studies have incorporated mineral and dissolution trap-
ping processes within VE models (Gasda et al., 2011; Postma
et al., 2022), the approach used herein focuses solely on
structural and residual trapping mechanisms. As the focus
of this work are the physical trapping mechanisms, these
geochemical mechanisms are neglected, although they have a
substantial impact on long-term storage (De Silva et al., 2015).

4.3.2 Study-specific limitations

Our reservoir modeling approach treats the reservoir as ver-
tically homogenous unit, assuming porosity and permeability
characteristics typical of average values in the Malay Basin.
However, these reservoirs are known to exhibit significant
layering, comprising thin reservoir intervals separated by low-
permeability mudstones. CO2 plumes would likely be much
more complex than those modeling in our study and further
work could include investigating the use of hybrid-VE models
(Møyner and Nilsen, 2019) to better represent this geological
setting.

In our modeling case, we focused on a single well injecting
CO2 at a constant rate and open model boundaries, which
allows CO2 to freely leave the area-of-interest (pseudo-storage
license). A larger model would be required to determine
where this CO2 eventually migrates to and the associated
pressure response immediately outside the storage license.
Including more injection wells could improve injectivity and
storage efficiency, but this would be accompanied by further
challenges such as that of minimizing pressure interference
(Pooladi-Darvish et al., 2011).

Furthermore, we did not account for pressure evolution
around the well or further afield. However, in reality, pres-
sures must be monitored as to not exceed caprock fracture
pressure. Further work could focus on understanding this

pressure buildup and its influence on geomechanical properties
within the reservoir and caprock. The magnitude and extent of
pressure perturbation may also constrain the storage capacity
of the system (Bachu, 2015; Birkholzer et al., 2015). Given the
topographical variations across the top surface grid, it would
be sensible to monitor reservoir pressure in the far up-dip
area in the northeast to ensure these are not approaching or
exceeding fracture pressures.

5. Conclusions
A workflow for assessing the storage capacity and effi-

ciency of a saline aquifer is presented, through combining
static and dynamic reduced complexity tools. These tools
include static methods (automated identification of structural
traps and optimization of well location to access the greatest
trapping volume) and dynamic methods (VE models). In the
case of the latter, the greatly reduced computational running
time allows us to run optimization procedures and sensitivity
analysis around uncertain parameters; an approach that cannot
be undertaken with more powerful, but computationally ex-
pensive reservoir simulators. We apply these techniques to an
area offshore Malaysia with illustrative reservoir parameters
and focus strictly on CO2 plume migration obtained from VE
modeling. The main conclusions taken from this work are as
follows:

1) Taking a volumetric approach to storage capacity results
in unrealistically large values. The key finding is that the
storage capacity derived from VE modeling is two orders
of magnitude smaller than that derived from the total pore
volume for the area.

2) The upper bound on storage efficiency is ultimately
dictated by how much CO2 is injected into the aquifer
system without suffering leakage away from the model
boundary (a proxy for a storage license). We analyzed
well placement by performing hundreds of simulations
and calculating storage efficiency. This resulted in the
best location for our area being down-dip of an anticline
structure into which the CO2 would migrate during the
post-injection period.

3) There is general agreement between static and dynamic
approaches to well placement optimization. The area
with the greatest “reachable volume” corresponds to
the area highlighted by VE modeling as achieving the
greatest storage efficiency, though this result could change
with different porosity/permeability distributions. How-
ever, storage capacities defined by static models are still
theoretical maximums and simulations should be used
to assess to what extent pore space can be accessed,
incorporating physics and spatial changes in geology.
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