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Supplementary Notes 

Detailed method of the partial least square (PLS) regression analysis 

Partial least squares (PLS) regression addresses the limitations inherent in traditional multiple 

regression methods when dealing with multicollinear variables and has garnered extensive 

application in correlation analyses between pore properties and geological factors (Liu et al., 2017, 

2019a, 2019b). This PLS regression technique enables regression analysis between a set (or multiple 

sets) of interrelated independent and dependent variables. Within the domain of shale pore research, 

the prevalent approach involves examining the correlations between a multitude of geological factors 

and a singular pore-related parameter, with the detailed computational methodologies (Rännar et al., 

1995; Stocchero et al., 2019; Wold et al., 2001) elaborated as follow: 

Assuming that a partial least squares analysis is conducted to examine the correlation between 

one dependent variable and 𝑝 independent variables across 𝑛 samples. The independent variables 

are represented by 𝑥, the data for the 𝑖-th sample of the 𝑗-th independent variable is denoted by 𝑥𝑖𝑗, 

and the sets of independent variables can be represented as an 𝑛 × 𝑝 matrix, which is denoted as 𝑿. 

Correspondingly, the dependent variable is symbolized as 𝑦, the data for the dependent variable of 

the 𝑖-th sample is expressed as 𝑦𝑖, and the dependent variable set can be represented as a column 

vector, denoted as 𝒚. Consequently, 𝑿 and 𝒚 can be respectively represented as: 

𝑿 = [

𝑥11 𝑥12 ⋯ 𝑥1𝑝

𝑥21 𝑥22 ⋯ 𝑥2𝑝

⋮ ⋮ ⋱ ⋮
𝑥𝑛1 𝑥𝑛2 ⋯ 𝑥𝑛𝑝

] (S1) 

𝒚 = [

𝑦1

𝑦2

⋮
𝑦𝑛

] (S2) 

The computation of PLS regression entails three pivotal stages. Step 1: all data are centralized 

and standardized via dividing each variable’s data by its mean value, followed by division by its 

standard deviation. The standardized values of 𝑥𝑖𝑗 are denoted as 𝑥𝑖𝑗
∗ , while the standardized values 

of 𝑦𝑖 are denoted as 𝑦𝑖
∗: 
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𝑥𝑖𝑗
∗ =

𝑥𝑖𝑗 − �̅�𝑗

σ𝑗

(S3) 

𝑦𝑖
∗ =

𝑦𝑖 − �̅�

σ𝑦

(S4) 

where �̅�𝑗 and �̅� represent the mean values of the 𝑗-th independent variable 𝒙𝒋 and the dependent 

variable 𝒚 , respectively. Additionally, σ𝑗  and σ𝑦  denote the standard deviations of 𝒙𝒋  and 𝒚 , 

respectively. The standardized dataset obtained by normalizing 𝑿 is denoted as matrix 𝑬𝟎. The set 

of standardized data for the 𝑗-th independent variable is denoted as 𝒙𝒋
∗, and the set of standardized 

data for 𝒚 is represented by vector 𝑭𝟎. After standardization, the measurement units of each variable 

are consistent. 

Step 2: several orthogonal components are extracted from the variable sets. The first component, 

denoted as 𝒕𝟏, is extracted from 𝑬𝟎 by multiplying 𝑬𝟎 with a weight vector: 

𝒕𝟏 =  𝑬𝟎𝒘𝟏 (S5) 

where 𝒘𝟏 represents the weight vector, which is a unit vector of 𝑬𝟎 known as the first axis of 𝑬𝟎. 

The primary principle in extracting the 𝒕𝟏 is to capture the maximum amount of variation present in 

𝑿, while simultaneously providing a maximized explanatory ability for 𝑭𝟎. This process can be 

represented as: 

{
Var(𝒕𝟏) →  max

r(𝒕𝟏, 𝑭𝟎) →  max
(S6) 

where Var(·)  represents the variance operator, and r(·, ·)  denotes the correlation coefficient 

operator. This problem can be formulated as solving the following optimization problem: 

{
max〈𝑬𝟎𝒘𝟏, 𝑭𝟎〉

s.t. 𝒘𝟏
T𝒘𝟏 = 1

(S7) 

That is to say that find the maximum value of  𝒘𝟏
T𝑬𝟎

T𝑭𝟎 under the constraint condition of ‖𝒘𝟏‖ =

1. By optimizing calculations, the following regression equation can be obtained: 

𝑬𝟎 = 𝒕𝟏𝒑𝟏
T + 𝑬𝟏 (S8) 

𝑭𝟎 = 𝒕𝟏𝑟1 + 𝑭𝟏 (S9) 
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where 𝒑𝟏 and 𝑟1 represent the coefficients (𝑟1 is a scalar), and 𝑬𝟏 and 𝑭𝟏 represent the residual 

matrices. 

Step 3: Replace 𝑬𝟎 and 𝑭𝟎 with 𝑬𝟏 and 𝑭𝟏 respectively, and repeat the Step 2 in the same 

manner. Extracting the second component 𝒕𝟐  through optimization calculation and obtain the 

following regression equation: 

𝑬𝟏 = 𝒕𝟐𝒑𝟐
T + 𝑬𝟐 (S10) 

𝑭𝟏 = 𝒕𝟐𝑟2 + 𝑭𝟐 (S11) 

where 𝒑𝟐 and 𝑟2 represent the coefficients (𝑟2 is a scalar), and 𝑬𝟐 and 𝑭𝟐 represent the residual 

matrices. Replace 𝑬𝟏  and 𝑭𝟏  with 𝑬𝟐  and 𝑭𝟐  respectively, and repeat the Step 3. Iterate this 

process (the number of iterations is determined through cross-validation, as described below) to 

obtain a series of regression equations. 

If the rank of 𝑿 is 𝐴, the regression equation for 𝑭𝟎 is expressed as: 

𝑭𝟎 = 𝒕𝟏𝑟1 + 𝒕𝟐𝑟2 + ⋯ + 𝒕𝑨𝑟𝐴 + 𝑭𝑨 (S12) 

where 𝑭𝑨 is a residual matrix. 

As 𝒕𝟏，𝒕𝟐，…，𝒕𝑨 are all linear equations of 𝒙𝟏
∗，𝒙𝟐

∗，…，𝒙𝒋
∗, Eq. S12 can be transformed 

into a linear equation of the standardized dependent variable 𝒚∗  (i.e., 𝑭𝟎 ) with respect to the 

standardized independent variable 𝒙𝒋
∗: 

𝒚∗ = 𝑎1𝒙𝟏
∗ + 𝑎2𝒙𝟐

∗ + ⋯ + 𝑎𝑝𝒙𝒑
∗ + 𝑭𝑨 (S13) 

where 𝑎1，𝑎2，…，𝑎𝑚 are constants and 𝑭𝑨 is a residual matrix. 

By performing inverse standardization on Eq. S13, the equation of 𝒚 with respect to 𝒙𝒋 can be 

obtained: 

𝒚 = 𝑏1𝒙𝟏 + 𝑏2𝒙𝟐 + ⋯ + 𝑏𝑝𝒙𝐩 + 𝑭𝑨 (S14) 

where 𝑏1，𝑏2，…，𝑏𝑚 are constants and 𝑭𝑨 is a residual matrix. 

When utilizing partial least squares regression to tackle practical problems, it is not necessary to 

include every component in the construction of the regression model. Instead, it is advantageous to 
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select only the first 𝑚 components that contribute to a regression model with superior predictive 

performance. If subsequent components fail to provide additional meaningful information towards 

explaining the dependent variable, including too many components can lead to misinterpretation of 

statistical trends and result in inaccurate predictions. Hence, it is crucial to extract an appropriate 

number of components (𝑚) for constructing the regression model, with 𝑚 determined through cross-

validation: 

The dataset comprising 𝑛 samples is divided into two distinct groups: the first group consists 

of the remaining samples (𝑛 − 1 samples) after the exclusion of the 𝑖-th sample. These samples are 

used to establish a regression equation involving ℎ components. The second group comprises the 

sample which was initially excluded prior to the regression. This particular sample’s data is then 

inserted into the established regression equation, enabling the derivation of the regression value 

�̂�ℎ(−𝑖) for 𝑦𝑖 with respect to the 𝑖-th sample. By applying the aforementioned steps to all samples 

(𝑖 = 1，2，…，𝑛), the predicted error sum of squares 𝑆𝑃𝑅𝐸𝑆𝑆,ℎ for 𝒚 can be calculated: 

𝑆𝑃𝑅𝐸𝑆𝑆,ℎ = ∑ (𝑦𝑖 − �̂�ℎ(−𝑖))
2

𝑞

𝑖=1

(S15) 

A regression equation with poorer robustness and larger errors tends to have a relatively higher value 

of 𝑆𝑃𝑅𝐸𝑆𝑆,ℎ . Subsequently, by utilizing the entire sample set, a partial least squares regression 

equation is constructed with ℎ − 1 components. We designate �̂�
(ℎ−1)𝑖

 as the regression value for 

the 𝑖-th sample. The sum of squared fitting errors of 𝒚, denoted as 𝑆𝑆𝑆,ℎ−1, is computed： 

𝑆𝑆𝑆,ℎ−1 = ∑ (𝑦𝑖 − �̂�(ℎ−1)𝑖)
2

𝑞

𝑖=1

(S16) 

In a PLS model, a lower 
𝑆𝑃𝑅𝐸𝑆𝑆,ℎ

𝑆𝑆𝑆,ℎ−1
 indicates better performance. Typically, when 

𝑆𝑃𝑅𝐸𝑆𝑆,ℎ

𝑆𝑆𝑆,ℎ−1
≤ 0.952, 

incorporating the ℎ -th component 𝒕𝒉  can substantially enhance the predictive accuracy of the 

regression model. Hence, within the confines of 
𝑆𝑃𝑅𝐸𝑆𝑆,ℎ

𝑆𝑆𝑆,ℎ−1
≤ 0.952, the maximum value of ℎ signifies 

the optimal number of extracted components. 
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It is crucial to acknowledge that in PLS analysis, the use of standardized coefficients (the 

coefficients in regression equation constructed from standardized data) might not accurately portray 

the extent of influence (i.e. marginal contribution) of descriptors on responses, partially due to 

potential intercorrelations among the variables. To address this issue, a parameter termed variable 

importance in projection (VIP) is employed in this study. VIP quantifies the incremental contribution 

of a descriptor to the extracted component(s) (Wang et al., 2006; Favilla et al., 2013). It is calculated 

using the following equation: 

VIP(𝑥𝑗) = √
𝑝

Rd(𝒚; 𝒕𝟏, 𝒕𝟐, ⋯ , 𝒕𝒎 )
∑ Rd(𝒚; 𝒕𝒉)𝜔

ℎ𝑗
2

𝑚

ℎ=1

(S17) 

where VIP(𝑥𝑗) represents the VIP value of the independent variable 𝒙𝒋. Rd(𝒚; 𝒕𝒉) denotes the 

variation precision of 𝒚 explained by 𝒕𝒉 (i.e., the proportion of 𝒚’s total variation accounted for 

by the variation influenced by 𝒕𝒉 ), which is denoted as Rd(𝒚; 𝒕𝒉) = r2(𝒚; 𝒕𝒉) . 

Rd(𝒚; 𝒕𝟏, 𝒕𝟐, ⋯ , 𝒕𝒎 )  represents the cumulative variation precision of 𝒚  explained by 

𝒕𝟏, 𝒕𝟐, ⋯ , 𝒕𝒎 . It is calculated by summing the individual variation precisions, denoted as 

Rd(𝒚; 𝒕𝟏, 𝒕𝟐, ⋯ , 𝒕𝒎 ) = ∑ Rd(𝒚; 𝒕𝒉)𝑚
ℎ=1 . 𝜔ℎ𝑗 denotes the weight of 𝒙𝒋 on the ℎ-th axis (𝒘𝒉). 

When a descriptor plays an important role in controlling the component(s), it significantly contributes 

to elucidating the response and is characterized by a relatively high VIP value. Generally, descriptors 

with VIP values greater than 1 (the average of square VIP values) are considered pertinent and vital 

for predicting the response (Jia et al., 2009; Favilla et al., 2013; Stocchero et al., 2019). 
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Supplementary Figures 1 

 2 

Fig. S1 Process of SEM quantitative analysis. (a) A secondary electron image of sample #15. (b–f) Pore and organic matter 3 

extraction from the lassoed SEM images separately containing interparticle pores (b), intercrystalline pores of pyrite (c), 4 

dissolution pores of feldspar (d), fractures (e) and organic matters (f) by using Fiji-imageJ software. (g) Extracted organic matters 5 

and pores with different genetic types.6 
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 7 

Fig. S2 Relationships between whole-rock macropore volume measured by mercury injection capillary pressure (MICP) 8 

and geological factors. (a) Macropore volume shows an evident logarithmic relationship with TOC content. (b) Macropore 9 

volume shows a linear relationship with TOC content. (c–f) Macropore volume shows ambiguous correlations with pyrite 10 

(c), carbonates (d), clay minerals (e) and feldspar (f).  11 
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 12 

Fig. S3 Relationships of TOC with quartz and pyrite. (a) TOC content has an obvious negative correlation with quartz 13 

content. (b) TOC content has an obvious positive correlation with pyrite content.14 
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Table S1 Sampling information, lithology, total organic carbon (TOC), vitrinite reflectance (Ro) and mineral composition of the Chang-7 shale oil reservoir 15 

samples of the Ordos Basin. 16 

Sample 

No. 
Well 

Depth 
Lithology 

Ro 

(%) 

TOC 

(wt%) 

Mineral content (wt%) 

(m) Clay minerals Quartz Feldspar Carbonates Pyrite 

#1 YY1 191.2 MS 0.66 1.35 36 30 23 11 n.d. 

#2 YY1 209.7 MS 0.63 1.99 33 30 17 20 n.d. 

#3 YY1 247.7 MS 0.69 0.85 31 34 29 6 n.d. 

#4 W336 1963.8 MS 0.73 7.44 41 28 25 3 3 

#5 W336 2059.5 MS 0.77 10.38 43 24 26 2 5 

#6 W336 2020.7 CS 0.73 11.31 53 24 18 3 2 

#7 YY1 224.0 CS+SL 0.66 11.45 31 17 25 8 19 

#8 YY1 225.8 CS+SL+MS 0.66 14.59 29 24 26 2 19 

#9 YY1 228.4 CS+SL 0.65 5.64 44 25 19 6 6 

#10 YY1 231.8 CS+SL 0.70 7.43 34 18 31 7 10 

#11 YY1 232.1 CS+SL+MS 0.66 4.20 40 25 20 9 6 

#12 YY1 233.2 CS+SL+MS 0.68 13.31 32 21 27 5 15 

#13 B522 1949.3 CS+SL 0.89 12.29 28 12 13 12 35 

#14 B522 1944.4 CS+SL 0.92 5.69 32 27 27 3 11 

#15 B522 1940.5 CS+SL 0.96 14.13 33 17 21 4 25 

#16 W336 1955.4 CS+SL 0.73 21.73 31 15 29 5 20 

Average    0.73 8.99 35.7 23.2 23.5 6.6 11.0 

MS: massive siltstone; CS: clay shale; SL: silty lamina; n.d.: no detected (below detection limits). 17 
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Table S2 Pore parameters obtained by mercury injection capillary pressure (MICP) and scanning electron microscope (SEM) quantitative analysis as well as 18 

area ratio of organic matters obtained by SEM for the whole-rock samples from the Chang-7 shale oil reservoirs of the Ordos Basin. 19 

Sample 

No. 
Lithology 

Macropore 

volume 

obtained 

by MICP 

(cm3/g) 

Total surface 

macroporosity 

obtained by 

SEM (%) 

Surface macroporosity of different pore types obtained by SEM (%) 
Area ratio of 

organic matters 

obtained by SEM 

(%) 

Pores 

among 

clay 

minerals 

Interparticle 

pores 

Dissolution 

pores in 

feldspar 

Dissolution 

pores in 

carbonates 

Fractures Other pores 

#1 MS 0.0092 1.71 1.50 0.11 0.05 n.o. 0.04  0.01  4.12  

#2 MS 0.0116 2.80 1.97 0.35 0.13 0.23 0.09  0.02  1.46  

#3 MS 0.0134 3.22 2.83 0.25 0.01 n.o. 0.10  0.03  0.72  

#4 MS 0.0088 2.37 1.38 0.53 0.39 n.o. 0.06  0.00  6.40  

#5 MS 0.0050 1.38 1.11 0.18 0.04 n.o. 0.05  0.00  8.95  

#6 CS 0.0027 0.71 0.37 0.06 0.26 n.o. 0.00  0.01  6.78  

#7 CS+SL 0.0084 1.24 0.71 0.10 0.15 0.13 0.12  0.03  15.09  

#8 CS+SL+MS 0.0043 0.74 0.32 0.19 0.15 n.o. 0.05  0.03  13.01  

#9 CS+SL 0.0086 1.41 0.96 0.08 0.32 0.01 0.03  0.01  8.00  

#10 CS+SL 0.0070 1.17 0.88 0.19 0.09 n.o. 0.01  0.00  10.57  

#11 CS+SL+MS 0.0082 1.56 1.08 0.31 0.12 0.00 0.04  0.01  6.82  

#12 CS+SL+MS 0.0055 0.93 0.72 0.09 0.07 n.o. 0.04  0.01  10.00  

#13 CS+SL 0.0048 0.90 0.48 0.17 0.13 0.04 0.02  0.06  8.75  

#14 CS+SL 0.0060 1.34 0.99 0.12 0.18 0.00 0.03  0.01  6.25  

#15 CS+SL 0.0055 0.59 0.33 0.04 0.05 0.01 0.14  0.02  17.82  

#16 CS+SL 0.0052 0.77 0.71 0.03 0.01 n.o. 0.00  0.02  22.76  

Average  0.0071 1.43 1.02 0.17 0.14 0.03 0.05 0.02 9.22 

MS: massive siltstone; CS: clay shale; SL: silty lamina; n.o.: no observed.  20 
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Table S3 Pore parameters and area ratio of organic matters obtained by scanning electron microscope (SEM) quantitative analysis for the clay shale within 21 

the Chang-7 shale oil reservoirs of the Ordos Basin. 22 

Lithology 

No. 

Sample 

No. 
Lithology 

Total surface 

macroporosity 

obtained by 

SEM (%) 

Surface macroporosity of different pore types obtained by SEM (%) Area ratio of 

organic matters 

obtained by 

SEM (%) 

Pores 

among clay 

minerals 

Interparticle 

pores 

Dissolution 

pores in 

feldspar 

Dissolution 

pores in 

carbonates 

Fractures Other pores 

CS-6 #6 Clay shale 0.71 0.37 0.06 0.26 n.o. 0.00 0.01 6.78  

CS-7 #7 Clay shale 0.49 0.28 0.01 0.02 n.o. 0.16  0.02  20.59  

CS-8 #8 Clay shale 0.23 0.15 0.04 0.02 n.o. 0.01  0.01  21.04  

CS-9 #9 Clay shale 0.97 0.72 0.09 0.10 0.01 0.03  0.01  9.58  

CS-10 #10 Clay shale 0.46 0.34 0.10 0.01 n.o. 0.00  0.00  16.02  

CS-11 #11 Clay shale 0.73 0.47 0.16 0.04 0.00 0.05  0.01  7.83  

CS-12 #12 Clay shale 0.32 0.23 0.04 0.03 n.o. 0.00  0.01  22.05  

CS-13 #13 Clay shale 0.60 0.28 0.12 0.10 n.o. 0.03  0.07  9.56  

CS-14 #14 Clay shale 1.28 0.96 0.12 0.17 n.o. 0.02  0.01  6.31  

CS-15 #15 Clay shale 0.60 0.34 0.04 0.05 0.01 0.15  0.02  17.81  

CS-16 #16 Clay shale 0.73 0.67 0.03 0.01 n.o. 0.00  0.02  23.52  

Average   0.65 0.44 0.07 0.07 0.00 0.04 0.02 14.64 

n.o.: no observed.  23 
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Table S4 Pore parameters and area ratio of organic matters obtained by scanning electron microscope (SEM) quantitative analysis for the massive siltstone 24 

within the Chang-7 shale oil reservoirs of the Ordos Basin. 25 

Lithology 

No. 

Sample 

No. 
Lithology 

Total surface 

macroporosit

y obtained by 

SEM (%) 

Surface macroporosity of different pore types obtained by SEM (%) Area ratio of 

organic matters 

obtained by 

SEM (%) 

Pores 

among clay 

minerals 

Interparticle 

pores 

Dissolution 

pores in 

feldspar 

Dissolution 

pores in 

carbonates 

Fractures 
Other 

pores 

MS-1 #1 Massive siltstone 1.71 1.50 0.11 0.05 n.o. 0.04  0.01  4.12  

MS-2 #2 Massive siltstone 2.80 1.97 0.35 0.13 0.23 0.09  0.02  1.46  

MS-3 #3 Massive siltstone 3.22 2.83 0.25 0.01 n.o. 0.10  0.03  0.72  

MS-4 #4 Massive siltstone 2.37 1.38 0.53 0.39 n.o. 0.06  0.00  6.40  

MS-5 #5 Massive siltstone 1.38 1.11 0.18 0.04 n.o. 0.05  0.00  8.95  

MS-8 #8 Massive siltstone 1.40 0.54 0.39 0.32 n.o. 0.10  0.06  3.20  

MS-11 #11 Massive siltstone 3.76 2.78 0.80 0.17 n.o. 0.01  0.00  4.11  

MS-12 #12 Massive siltstone 1.31 1.06 0.12 0.06 n.o. 0.06  0.00  2.49  

Average   2.24 1.65 0.34 0.15 0.03 0.06  0.02  3.93 

n.o.: no observed.  26 
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Table S5 Pore parameters and area ratio of organic matters obtained by scanning electron microscope (SEM) quantitative analysis for the silty lamina within 27 

the Chang-7 shale oil reservoirs of the Ordos Basin. 28 

Lithology 

No. 

Sample 

No. 
Lithology 

Total surface 

macroporosity 

obtained by 

SEM (%) 

Surface macroporosity of different pore types obtained by SEM (%) Area ratio of 

organic 

matters 

obtained by 

SEM (%) 

Pores among 

clay minerals 

Interparticle 

pores 

Dissolution 

pores in feldspar 

Dissolution 

pores in 

carbonates 

Fractures 
Other 

pores 

SL-7(1) #7 Silty lamina 0.40 0.21 0.02 0.07 0.09 0.00  0.00  11.67  

SL-7(2) #7 Silty lamina 0.63 0.15 0.05 0.06 0.37 0.01  0.00  11.58  

SL-7(3) #7 Silty lamina 0.24 0.07 0.07 0.08 0.02 0.00  0.00  10.13  

SL-7(4) #7 Silty lamina 0.58 0.13 0.06 0.39 0.00 0.00  0.00  14.18  

SL-7(5) #7 Silty lamina 3.17 1.86 0.31 0.46 0.43 0.06  0.05  3.01  

SL-8(1) #8 Silty lamina 0.31 0.24 0.02 0.00 n.o. 0.04  0.00  15.09  

SL-8(2) #8 Silty lamina 0.23 0.17 0.02 0.02 n.o. 0.03  0.00  14.76  

SL-9(1) #9 Silty lamina 2.56 1.58 0.06 0.88 n.o. 0.03  0.00  3.86  

SL-10(1) #10 Silty lamina 2.08 1.57 0.30 0.18 n.o. 0.03  0.00  3.55  

SL-11(1) #11 Silty lamina 3.26 1.66 0.11 1.47 n.o. 0.02  0.00  5.08  

SL-12(1) #12 Silty lamina 0.40 0.35 0.04 0.00 n.o. 0.00  0.00  13.92  

SL-12(2) #12 Silty lamina 0.29 0.09 0.02 0.18 n.o. 0.00  0.00  9.77  

SL-12(3) #12 Silty lamina 1.21 0.68 0.05 0.43 n.o. 0.05  0.00  7.20  

SL-13(1) #13 Silty lamina 2.97 1.81 0.72 0.38 0.05 0.00  0.00  5.30  

SL-13(2) #13 Silty lamina 2.64 1.60 0.44 0.32 0.27 0.00  0.01  3.89  

SL-14(1) #14 Silty lamina 1.87 1.26 0.15 0.32 0.01 0.11  0.02  5.63  

SL-15(1) #15 Silty lamina 0.53 0.26 0.02 0.24 n.o. 0.01  0.00  18.87  

SL-16(1) #16 Silty lamina 1.37 1.27 0.02 0.06 n.o. 0.00  0.01  13.41  

Average   1.37 0.83 0.14 0.31 0.07 0.02  0.01  9.50 

n.o.: no observed.29 
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