Supplementary file

Efforts to untie the multicollinearity knot and identify factors controlling macropore structures in shale oil reservoirs

Ziyi Wang¹, Lin Dong^{1,*}, Zhijun Jin^{1,2}, Shuangmei Zou³, Jinhua Fu⁴, Rukai Zhu⁵

¹ School of Earth and Space Sciences, Peking University, Beijing 100871, P. R. China

² Institute of Energy, Peking University, Beijing 100871, P. R. China

³ School of Earth Resources, China University of Geosciences (Wuhan), Wuhan 430074, P. R. China

⁴ PetroChina Changqing Oilfield Company, Xi'an 710018, P. R. China

⁵Research Institute of Petroleum Exploration & Development, PetroChina, Beijing 100083, P. R. China

E-mail address: ziyi-wang@pku.edu.cn (Z. Wang); lin.dong@pku.edu.cn (L. Dong); jinzj1957@pku.edu.cn (Z.

Jin); zousm@cug.edu.cn (S. Zou); fjh_cq@petrochina.com.cn (J. Fu); zrk@petrochina.com.cn (R. Zhu).

* Corresponding author (ORCID: 0000-0003-1754-842X)

Wang, Z., Dong, L., Jin, Z., et al. Efforts to untie the multicollinearity knot and identify factors controlling macropore structures in shale oil reservoirs. Advances in Geo-Energy Research, 2024, 11(3): 194-207. The link to this file is: https://doi.org/10.46690/ager.2024.03.04

This file includes:

Supplementary Notes

Supplementary Figures S1–S3

Supplementary Tables S1–S5

References

Supplementary Notes

Detailed method of the partial least square (PLS) regression analysis

Partial least squares (PLS) regression addresses the limitations inherent in traditional multiple regression methods when dealing with multicollinear variables and has garnered extensive application in correlation analyses between pore properties and geological factors (Liu et al., 2017, 2019a, 2019b). This PLS regression technique enables regression analysis between a set (or multiple sets) of interrelated independent and dependent variables. Within the domain of shale pore research, the prevalent approach involves examining the correlations between a multitude of geological factors and a singular pore-related parameter, with the detailed computational methodologies (Rännar et al., 1995; Stocchero et al., 2019; Wold et al., 2001) elaborated as follow:

Assuming that a partial least squares analysis is conducted to examine the correlation between one dependent variable and p independent variables across n samples. The independent variables are represented by x, the data for the *i*-th sample of the *j*-th independent variable is denoted by x_{ij} , and the sets of independent variables can be represented as an $n \times p$ matrix, which is denoted as X. Correspondingly, the dependent variable is symbolized as y, the data for the dependent variable of the *i*-th sample is expressed as y_i , and the dependent variable set can be represented as a column vector, denoted as y. Consequently, X and y can be respectively represented as:

$$\boldsymbol{X} = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1p} \\ x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{np} \end{bmatrix}$$
(S1)

$$\boldsymbol{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$
(S2)

The computation of PLS regression entails three pivotal stages. Step 1: all data are centralized and standardized via dividing each variable's data by its mean value, followed by division by its standard deviation. The standardized values of x_{ij} are denoted as x_{ij}^* , while the standardized values of y_i are denoted as y_i^* :

$$x_{ij}^* = \frac{x_{ij} - \bar{x}_j}{\sigma_j} \tag{S3}$$

$$y_i^* = \frac{y_i - \bar{y}}{\sigma_y} \tag{S4}$$

where \bar{x}_j and \bar{y} represent the mean values of the *j*-th independent variable x_j and the dependent variable y, respectively. Additionally, σ_j and σ_y denote the standard deviations of x_j and y, respectively. The standardized dataset obtained by normalizing X is denoted as matrix E_0 . The set of standardized data for the *j*-th independent variable is denoted as x_j^* , and the set of standardized data for y is represented by vector F_0 . After standardization, the measurement units of each variable are consistent.

Step 2: several orthogonal components are extracted from the variable sets. The first component, denoted as t_1 , is extracted from E_0 by multiplying E_0 with a weight vector:

$$t_1 = E_0 w_1 \tag{S5}$$

where w_1 represents the weight vector, which is a unit vector of E_0 known as the first axis of E_0 . The primary principle in extracting the t_1 is to capture the maximum amount of variation present in X, while simultaneously providing a maximized explanatory ability for F_0 . This process can be represented as:

$$\begin{cases} \operatorname{Var}(t_1) \to \max \\ \operatorname{r}(t_1, F_0) \to \max \end{cases}$$
(S6)

where $Var(\cdot)$ represents the variance operator, and $r(\cdot, \cdot)$ denotes the correlation coefficient operator. This problem can be formulated as solving the following optimization problem:

$$\begin{cases} \max \langle \boldsymbol{E}_0 \boldsymbol{w}_1, \ \boldsymbol{F}_0 \rangle \\ \text{s.t. } \boldsymbol{w}_1^{\mathrm{T}} \boldsymbol{w}_1 = 1 \end{cases}$$
(S7)

That is to say that find the maximum value of $w_1^T E_0^T F_0$ under the constraint condition of $||w_1|| =$ 1. By optimizing calculations, the following regression equation can be obtained:

$$\boldsymbol{E}_0 = \boldsymbol{t}_1 \boldsymbol{p}_1^{\mathrm{T}} + \boldsymbol{E}_1 \tag{S8}$$

$$\boldsymbol{F}_{0} = \boldsymbol{t}_{1}\boldsymbol{r}_{1} + \boldsymbol{F}_{1} \tag{S9}$$

where p_1 and r_1 represent the coefficients (r_1 is a scalar), and E_1 and F_1 represent the residual matrices.

Step 3: Replace E_0 and F_0 with E_1 and F_1 respectively, and repeat the Step 2 in the same manner. Extracting the second component t_2 through optimization calculation and obtain the following regression equation:

$$\boldsymbol{E}_1 = \boldsymbol{t}_2 \boldsymbol{p}_2^{\mathrm{T}} + \boldsymbol{E}_2 \tag{S10}$$

$$\boldsymbol{F}_1 = \boldsymbol{t}_2 \boldsymbol{r}_2 + \boldsymbol{F}_2 \tag{S11}$$

where p_2 and r_2 represent the coefficients (r_2 is a scalar), and E_2 and F_2 represent the residual matrices. Replace E_1 and F_1 with E_2 and F_2 respectively, and repeat the Step 3. Iterate this process (the number of iterations is determined through cross-validation, as described below) to obtain a series of regression equations.

If the rank of X is A, the regression equation for F_0 is expressed as:

$$F_0 = t_1 r_1 + t_2 r_2 + \dots + t_A r_A + F_A$$
(S12)

where F_A is a residual matrix.

As t_1 , t_2 , ..., t_A are all linear equations of x_1^* , x_2^* , ..., x_j^* , Eq. S12 can be transformed into a linear equation of the standardized dependent variable y^* (i.e., F_0) with respect to the standardized independent variable x_j^* :

$$y^* = a_1 x_1^* + a_2 x_2^* + \dots + a_p x_p^* + F_A$$
(S13)

where a_1, a_2, \dots, a_m are constants and F_A is a residual matrix.

By performing inverse standardization on Eq. S13, the equation of y with respect to x_j can be obtained:

$$\mathbf{y} = b_1 \mathbf{x}_1 + b_2 \mathbf{x}_2 + \dots + b_p \mathbf{x}_p + \mathbf{F}_A \tag{S14}$$

where b_1, b_2, \dots, b_m are constants and F_A is a residual matrix.

When utilizing partial least squares regression to tackle practical problems, it is not necessary to include every component in the construction of the regression model. Instead, it is advantageous to

select only the first m components that contribute to a regression model with superior predictive performance. If subsequent components fail to provide additional meaningful information towards explaining the dependent variable, including too many components can lead to misinterpretation of statistical trends and result in inaccurate predictions. Hence, it is crucial to extract an appropriate number of components (m) for constructing the regression model, with m determined through cross-validation:

The dataset comprising *n* samples is divided into two distinct groups: the first group consists of the remaining samples (n - 1 samples) after the exclusion of the *i*-th sample. These samples are used to establish a regression equation involving *h* components. The second group comprises the sample which was initially excluded prior to the regression. This particular sample's data is then inserted into the established regression equation, enabling the derivation of the regression value $\hat{y}_{h(-i)}$ for y_i with respect to the *i*-th sample. By applying the aforementioned steps to all samples $(i = 1, 2, \dots, n)$, the predicted error sum of squares $S_{PRESS,h}$ for y can be calculated:

$$S_{PRESS,h} = \sum_{i=1}^{q} \left(y_i - \hat{y}_{h(-i)} \right)^2$$
(S15)

A regression equation with poorer robustness and larger errors tends to have a relatively higher value of $S_{PRESS,h}$. Subsequently, by utilizing the entire sample set, a partial least squares regression equation is constructed with h - 1 components. We designate $\hat{y}_{(h-1)i}$ as the regression value for the *i*-th sample. The sum of squared fitting errors of y, denoted as $S_{SS,h-1}$, is computed:

$$S_{SS,h-1} = \sum_{i=1}^{q} \left(y_i - \hat{y}_{(\hbar-1)i} \right)^2$$
(S16)

In a PLS model, a lower $\frac{S_{PRESS,h}}{S_{SS,h-1}}$ indicates better performance. Typically, when $\frac{S_{PRESS,h}}{S_{SS,h-1}} \le 0.95^2$, incorporating the *h*-th component t_h can substantially enhance the predictive accuracy of the regression model. Hence, within the confines of $\frac{S_{PRESS,h}}{S_{SS,h-1}} \le 0.95^2$, the maximum value of *h* signifies the optimal number of extracted components.

It is crucial to acknowledge that in PLS analysis, the use of standardized coefficients (the coefficients in regression equation constructed from standardized data) might not accurately portray the extent of influence (i.e. marginal contribution) of descriptors on responses, partially due to potential intercorrelations among the variables. To address this issue, a parameter termed variable importance in projection (VIP) is employed in this study. VIP quantifies the incremental contribution of a descriptor to the extracted component(s) (Wang et al., 2006; Favilla et al., 2013). It is calculated using the following equation:

$$\operatorname{VIP}(x_j) = \sqrt{\frac{p}{\operatorname{Rd}(y; t_1, t_2, \cdots, t_m)}} \sum_{h=1}^m \operatorname{Rd}(y; t_h) \omega_{\lambda j}^2$$
(S17)

where $\operatorname{VIP}(x_j)$ represents the VIP value of the independent variable x_j . $\operatorname{Rd}(y; t_h)$ denotes the variation precision of y explained by t_h (i.e., the proportion of y's total variation accounted for by the variation influenced by t_h), which is denoted as $\operatorname{Rd}(y; t_h) = r^2(y; t_h)$. $\operatorname{Rd}(y; t_1, t_2, \dots, t_m)$ represents the cumulative variation precision of y explained by t_1, t_2, \dots, t_m . It is calculated by summing the individual variation precisions, denoted as $\operatorname{Rd}(y; t_1, t_2, \dots, t_m) = \sum_{h=1}^m \operatorname{Rd}(y; t_h)$. ω_{hj} denotes the weight of x_j on the *h*-th axis (w_h). When a descriptor plays an important role in controlling the component(s), it significantly contributes to elucidating the response and is characterized by a relatively high VIP value. Generally, descriptors with VIP values greater than 1 (the average of square VIP values) are considered pertinent and vital for predicting the response (Jia et al., 2009; Favilla et al., 2013; Stocchero et al., 2019).

Supplementary Figures 1

Fig. S1 Process of SEM quantitative analysis. (a) A secondary electron image of sample #15. (b-f) Pore and organic matter extraction from the lassoed SEM images separately containing interparticle pores (b), intercrystalline pores of pyrite (c), 5 dissolution pores of feldspar (d), fractures (e) and organic matters (f) by using Fiji-imageJ software. (g) Extracted organic matters 6 and pores with different genetic types.

Fig. S2 Relationships between whole-rock macropore volume measured by mercury injection capillary pressure (MICP)
and geological factors. (a) Macropore volume shows an evident logarithmic relationship with TOC content. (b) Macropore
volume shows a linear relationship with TOC content. (c–f) Macropore volume shows ambiguous correlations with pyrite
(c), carbonates (d), clay minerals (e) and feldspar (f).

13 Fig. S3 Relationships of TOC with quartz and pyrite. (a) TOC content has an obvious negative correlation with quartz

14 content. (b) TOC content has an obvious positive correlation with pyrite content.

12

15 **Table S1** Sampling information, lithology, total organic carbon (TOC), vitrinite reflectance (*R*₀) and mineral composition of the Chang-7 shale oil reservoir

16 samples of the Ordos Basin.

Sample	Wall	Depth	Lithology	R _o TOC		Mineral content (wt%)						
No.	wen	(m)	Littiology	(%)	(wt%)	Clay minerals	Quartz	Feldspar	Carbonates	Pyrite		
#1	YY1	191.2	MS	0.66	1.35	36	30	23	11	n.d.		
#2	YY1	209.7	MS	0.63	1.99	33	30	17	20	n.d.		
#3	YY1	247.7	MS	0.69	0.85	31	34	29	6	n.d.		
#4	W336	1963.8	MS	0.73	7.44	41	28	25	3	3		
#5	W336	2059.5	MS	0.77	10.38	43	24	26	2	5		
#6	W336	2020.7	CS	0.73	11.31	53	24	18	3	2		
#7	YY1	224.0	CS+SL	0.66	11.45	31	17	25	8	19		
#8	YY1	225.8	CS+SL+MS	0.66	14.59	29	24	26	2	19		
#9	YY1	228.4	CS+SL	0.65	5.64	44	25	19	6	6		
#10	YY1	231.8	CS+SL	0.70	7.43	34	18	31	7	10		
#11	YY1	232.1	CS+SL+MS	0.66	4.20	40	25	20	9	6		
#12	YY1	233.2	CS+SL+MS	0.68	13.31	32	21	27	5	15		
#13	B522	1949.3	CS+SL	0.89	12.29	28	12	13	12	35		
#14	B522	1944.4	CS+SL	0.92	5.69	32	27	27	3	11		
#15	B522	1940.5	CS+SL	0.96	14.13	33	17	21	4	25		
#16	W336	1955.4	CS+SL	0.73	21.73	31	15	29	5	20		
Average				0.73	8.99	35.7	23.2	23.5	6.6	11.0		

17 MS: massive siltstone; CS: clay shale; SL: silty lamina; n.d.: no detected (below detection limits).

18 **Table S2** Pore parameters obtained by mercury injection capillary pressure (MICP) and scanning electron microscope (SEM) quantitative analysis as well as

area ratio of organic matters obtained by SEM for the whole-rock samples from the Chang-7 shale oil reservoirs of the Ordos Basin.

	Lithology	Macropore volume	Total surface	Surface n	Area ratio of					
Sample			macroporosity	Pores		Dissolution	Dissolution			organic matters
No.		obtained		among Interpar	Interparticle	pores in	pores in	Fractures	Other pores	obtained by SEM
		by MICP	SEM (%)	clay	pores	feldsnar	carbonates	1 14004105	o ther pores	(%)
		(cm ³ /g)	SENT (70)	minerals		Teruspur	carbonates			(70)
#1	MS	0.0092	1.71	1.50	0.11	0.05	n.o.	0.04	0.01	4.12
#2	MS	0.0116	2.80	1.97	0.35	0.13	0.23	0.09	0.02	1.46
#3	MS	0.0134	3.22	2.83	0.25	0.01	n.o.	0.10	0.03	0.72
#4	MS	0.0088	2.37	1.38	0.53	0.39	n.o.	0.06	0.00	6.40
#5	MS	0.0050	1.38	1.11	0.18	0.04	n.o.	0.05	0.00	8.95
#6	CS	0.0027	0.71	0.37	0.06	0.26	n.o.	0.00	0.01	6.78
#7	CS+SL	0.0084	1.24	0.71	0.10	0.15	0.13	0.12	0.03	15.09
#8	CS+SL+MS	0.0043	0.74	0.32	0.19	0.15	n.o.	0.05	0.03	13.01
#9	CS+SL	0.0086	1.41	0.96	0.08	0.32	0.01	0.03	0.01	8.00
#10	CS+SL	0.0070	1.17	0.88	0.19	0.09	n.o.	0.01	0.00	10.57
#11	CS+SL+MS	0.0082	1.56	1.08	0.31	0.12	0.00	0.04	0.01	6.82
#12	CS+SL+MS	0.0055	0.93	0.72	0.09	0.07	n.o.	0.04	0.01	10.00
#13	CS+SL	0.0048	0.90	0.48	0.17	0.13	0.04	0.02	0.06	8.75
#14	CS+SL	0.0060	1.34	0.99	0.12	0.18	0.00	0.03	0.01	6.25
#15	CS+SL	0.0055	0.59	0.33	0.04	0.05	0.01	0.14	0.02	17.82
#16	CS+SL	0.0052	0.77	0.71	0.03	0.01	n.o.	0.00	0.02	22.76
Average		0.0071	1.43	1.02	0.17	0.14	0.03	0.05	0.02	9.22

20 MS: massive siltstone; CS: clay shale; SL: silty lamina; n.o.: no observed.

19

21 Table S3 Pore parameters and area ratio of organic matters obtained by scanning electron microscope (SEM) quantitative analysis for the clay shale within

22 the Chang-7 shale oil reservoirs of the Ordos Basin.

			Total surface	Surface mac	Area ratio of					
Lithology	Sample	Lithology	macroporosity	Pores	Interparticle	Dissolution	Dissolution			organic matters
No.	No.	Littiology	obtained by	among clay		pores in	pores in	Fractures	Other pores	obtained by
			SEM (%)	minerals	pores	feldspar	carbonates			SEM (%)
CS-6	#6	Clay shale	0.71	0.37	0.06	0.26	n.o.	0.00	0.01	6.78
CS-7	#7	Clay shale	0.49	0.28	0.01	0.02	n.o.	0.16	0.02	20.59
CS-8	#8	Clay shale	0.23	0.15	0.04	0.02	n.o.	0.01	0.01	21.04
CS-9	#9	Clay shale	0.97	0.72	0.09	0.10	0.01	0.03	0.01	9.58
CS-10	#10	Clay shale	0.46	0.34	0.10	0.01	n.o.	0.00	0.00	16.02
CS-11	#11	Clay shale	0.73	0.47	0.16	0.04	0.00	0.05	0.01	7.83
CS-12	#12	Clay shale	0.32	0.23	0.04	0.03	n.o.	0.00	0.01	22.05
CS-13	#13	Clay shale	0.60	0.28	0.12	0.10	n.o.	0.03	0.07	9.56
CS-14	#14	Clay shale	1.28	0.96	0.12	0.17	n.o.	0.02	0.01	6.31
CS-15	#15	Clay shale	0.60	0.34	0.04	0.05	0.01	0.15	0.02	17.81
CS-16	#16	Clay shale	0.73	0.67	0.03	0.01	n.o.	0.00	0.02	23.52
Average			0.65	0.44	0.07	0.07	0.00	0.04	0.02	14.64

23 n.o.: no observed.

24 **Table S4** Pore parameters and area ratio of organic matters obtained by scanning electron microscope (SEM) quantitative analysis for the massive siltstone

25 within the Chang-7 shale oil reservoirs of the Ordos Basin.

T'(1 1	G 1		Total surface	Surface macr	Area ratio of						
Lithology No.	No. No.	e Lithology	Lithology y obtai	y obtained by SEM (%)	Pores among clay minerals	Interparticle pores	Dissolution pores in feldspar	Dissolution pores in carbonates	Fractures	Other pores	obtained by SEM (%)
MS-1	#1	Massive siltstone	1.71	1.50	0.11	0.05	n.o.	0.04	0.01	4.12	
MS-2	#2	Massive siltstone	2.80	1.97	0.35	0.13	0.23	0.09	0.02	1.46	
MS-3	#3	Massive siltstone	3.22	2.83	0.25	0.01	n.o.	0.10	0.03	0.72	
MS-4	#4	Massive siltstone	2.37	1.38	0.53	0.39	n.o.	0.06	0.00	6.40	
MS-5	#5	Massive siltstone	1.38	1.11	0.18	0.04	n.o.	0.05	0.00	8.95	
MS-8	#8	Massive siltstone	1.40	0.54	0.39	0.32	n.o.	0.10	0.06	3.20	
MS-11	#11	Massive siltstone	3.76	2.78	0.80	0.17	n.o.	0.01	0.00	4.11	
MS-12	#12	Massive siltstone	1.31	1.06	0.12	0.06	n.o.	0.06	0.00	2.49	
Average			2.24	1.65	0.34	0.15	0.03	0.06	0.02	3.93	

26 n.o.: no observed.

27 **Table S5** Pore parameters and area ratio of organic matters obtained by scanning electron microscope (SEM) quantitative analysis for the silty lamina within

28 the Chang-7 shale oil reservoirs of the Ordos Basin.

		e Lithology	Total surface macroporosity obtained by SEM (%)	Surface macro	Area ratio	ratio of					
Lithology S No.	Sample No.			Pores among clay minerals	Interparticle pores	Dissolution pores in feldspar	Dissolution pores in carbonates	Fractures	Other pores	- organic matters obtained SEM (%)	by
SL-7(1)	#7	Silty lamina	0.40	0.21	0.02	0.07	0.09	0.00	0.00	11.67	
SL-7(2)	#7	Silty lamina	0.63	0.15	0.05	0.06	0.37	0.01	0.00	11.58	
SL-7(3)	#7	Silty lamina	0.24	0.07	0.07	0.08	0.02	0.00	0.00	10.13	
SL-7(4)	#7	Silty lamina	0.58	0.13	0.06	0.39	0.00	0.00	0.00	14.18	
SL-7(5)	#7	Silty lamina	3.17	1.86	0.31	0.46	0.43	0.06	0.05	3.01	
SL-8(1)	#8	Silty lamina	0.31	0.24	0.02	0.00	n.o.	0.04	0.00	15.09	
SL-8(2)	#8	Silty lamina	0.23	0.17	0.02	0.02	n.o.	0.03	0.00	14.76	
SL-9(1)	#9	Silty lamina	2.56	1.58	0.06	0.88	n.o.	0.03	0.00	3.86	
SL-10(1)	#10	Silty lamina	2.08	1.57	0.30	0.18	n.o.	0.03	0.00	3.55	
SL-11(1)	#11	Silty lamina	3.26	1.66	0.11	1.47	n.o.	0.02	0.00	5.08	
SL-12(1)	#12	Silty lamina	0.40	0.35	0.04	0.00	n.o.	0.00	0.00	13.92	
SL-12(2)	#12	Silty lamina	0.29	0.09	0.02	0.18	n.o.	0.00	0.00	9.77	
SL-12(3)	#12	Silty lamina	1.21	0.68	0.05	0.43	n.o.	0.05	0.00	7.20	
SL-13(1)	#13	Silty lamina	2.97	1.81	0.72	0.38	0.05	0.00	0.00	5.30	
SL-13(2)	#13	Silty lamina	2.64	1.60	0.44	0.32	0.27	0.00	0.01	3.89	
SL-14(1)	#14	Silty lamina	1.87	1.26	0.15	0.32	0.01	0.11	0.02	5.63	
SL-15(1)	#15	Silty lamina	0.53	0.26	0.02	0.24	n.o.	0.01	0.00	18.87	
SL-16(1)	#16	Silty lamina	1.37	1.27	0.02	0.06	n.o.	0.00	0.01	13.41	
Average			1.37	0.83	0.14	0.31	0.07	0.02	0.01	9.50	

29 n.o.: no observed.

30 **References**

- Favilla, S., Durante, C., Vigni, M.L., et al. Assessing feature relevance in NPLS models by VIP.
 Chemometrics and Intelligent Laboratory Systems, 2013, 129: 76–86.
- Jia, J., Deng, H., Duan, J., et al. Analysis of the major drivers of the ecological footprint using the STIRPAT
 model and the PLS method-A case study in Henan Province, China. Ecological Economics, 2009, 68:
 2818–2824.
- Liu, K., Ostadhassan, M., Sun, L., et al. A comprehensive pore structure study of the Bakken Shale with
 SANS, N2 adsorption and mercury intrusion. Fuel, 2019a, 245: 274–285.
- Liu, K., Ostadhassan, M., Zhou, J., et al. Nanoscale pore structure characterization of the Bakken shale in
 the USA. Fuel, 2017, 209: 567–578.
- Liu, K., Wang, L., Ostadhassan, M., et al. Nanopore structure comparison between shale oil and shale gas:
 examples from the Bakken and Longmaxi Formations. Petroleum Science, 2019b, 16: 77–93.
- Rännar, S., Geladi, P., Lindgren, F., et al. A PLS kernel algorithm for data sets with many variables and
 few objects. Part II: Cross-validation, missing data and examples. Journal of Chemometrics, 1995, 9:
 44 459–470.
- 45 Stocchero, M., Locci, E., D'Aloja, E., et al. PLS2 in metabolomics. Metabolites, 2019, 9: 9030051.
- Wang, H., Wu, Z., Meng, J. Partial Least-Squares Regression–Linear and Nonlinear Methods. Beijing,
 China, National Defense Industry Press, 2006.
- Wold, S., Sjostrom, M., Eriksson, L. PLS-regression : a basic tool of chemometrics. Chemometrics and
 Intelligent Laboratory Systems, 2001, 58: 109–130.
- 50